Al al-Bayt University
Prince Hussein bin Abdullah College of Information Technology

Computer Science Department

An Algorithm for Finding Approximate Local Similarities in DNA

Sequences

By

Najah Methgal Ali ALshanableh

2009

www.manaraa.com

An Algorithm for Finding Approximate Local Similarities in DNA

Sequences

By

Najah Methqgal Ali ALshanableh

Supervisor: Dr. Mamoun Al-Rababaa

A Thesis Submitted to the
Scientific Research and Graduate Faculty in partial fulfillment of the
Requirements for the degree of Master of Science

in Computer Science

Members of the Committee Approved
Dr. Mamoun Al-Rababaa ..
Dr. Jehad Q. Alnthoud

Dr. Venus Samawi .

Dr. Maryam Nuser

Al al-Bayt University
Mafraq, Jordan
2009

www.manaraa.com

Dedication

This thesis is dedicated to everyone who gave me love, friendship and support during

my research.

www.manaraa.com

Acknowledgements

I would like to thank my supervisor Dr. Mamoun Al-Rababaa and Dr. Jehad Alkhaldy.
They both gave me guidelines for doing a scientific research, and ensured the quality of
my work. Also I would like to thank Dr. Wafa Elbjeirami, Director of Molecular
Diagnostics and Immunogenetics in King Hussein Cancer Centre and all the stuff who
helped me in my research, thanks a lot.

I also want to thank all my friends who supported me over the period of my research. At
last, I would like to thank my father, my mother, and all other members in my family

for their generous and kind supports.

www.manaraa.com

List of contents

Subject Page
Front Page A
Dedication B
Acknowledgment C
List of contents D
List of tables F
List of figures G
List of appendices I
List of abbreviations J
Abstract K
Chapter one : Introduction 1
1.1Scope of the Study 2
1.2. Aims and Objectives 2
1.3. Significance of the Study 2
1.4. Contributions 2
1.5 Thesis Outline 3
Chapter two: Bioinformatics 4
2.1 Bioinformatics 5
2.2 Deoxyribonucleic Acid (DNA) 6
2.3 Sequence Alignment 7
2.4 Approximate Local Similarities in DNA 10
2.4.1History of the Problem 11
2.4.2 Formal Definition 11
2.4.3 Approximate String Matching 12
Chapter Three: Literature Review 16
3.1 Needleman-Wunsch algorithm 16
3.2 Smith-Waterman algorithm 17
3.3 FASTA algorithm 20
3.4 BLAST algorithm 21
3.5 PatternHunter 21

www.manaraa.com

Chapter Four : Methodology 25
4.1 Heuristics 25
4.2 Scoring Matrices 26
4.3 Word length (Seed) 27
4.4 String matching techniques 28
Chapter Five: The proposed Algorithm 34
5.1 Algorithm Description 34
Chapter Six: AFALS-N Software 41
6.1 Software Development Model 41
6.2 Implementation 45
6.3 User Interface Screens 48
Chapter Seven : Results and Discussion 53
7.1 Test environment 53
7.2 Sensitivity analysis 54
7.3 Execution Time Evaluation 56
7.3 Comparison with PatternHunter 57
Chapter Eight:Conclusion and Future Work 59
8.1 Conclusion 59
8.2 Future work 59
References 60
oasldl) 63
Appendix A: Sample of Test Data 64
Appendix B: Implementation and Screens 70

www.manaraa.com

List of tables
Table Page
Table 3.1: PatternHunter compared to Blastn 22
Table 7.1 :Organisms compared 53
Table 7.2 : Execution times for sequences of size ranging from 1 kBP to 3MBP 56
Table 7.3 : PatternHunter vs AFALS-N 57
Table 7.4 : PatternHunter vs AFALS-N(word size 11) 58

www.manaraa.com

List of figures

Figure Page
Figure 2.1: Bioinformatics 5
Figure 2.2: DNA Components 6
Figure 2.3: DNA double helix 7
Figure 2.4: DNA sequencing 7
Figure 2.5: DNA sequencing 8
Figure 2.6: Bioinformatics 9
Figure 3.1 : PatternHunter compared to Megablast 22
Figure 3.2: PH alignment rank and score. 23
Figure 3.3: PH sensitivity 24
Figure 4.1: Alignment score 27
Figure 4.2: Bordersr, s of a string x 30
Figure 4.3: Extension of a border 30
Figure 4.4: Prefix of length 1 of the pattern with border of width bl[i] 30
Figure 4.5: Border of length m of a prefix x of pt 32
Figure 4.6: Shift of the pattern when a mismatch at position j occurs 33
Figure 5.1 : AFALS Algorithm 35
Figure 5.2: AFALS Algorithm Flow chart 36
Figure 5.3 : Data partition example 37
Figure5.4 : KMP output example 37
Figure 6.1: Classical Waterfall Model 42
Figure 6.2: Modified Waterfall Model 43
Figure 6.3: Blue] Screen 45
Figure 6.4 : Classes in AFALS-N 46
Figure 6.5 : MainWindow Class 47
Figure 6.6 : Test Class 47
Figure 6.7 : AFALS-N screen 48
Figure 6.8 : File menu 49

www.manaraa.com

Figure 6.9 : Edit menu 49
Figure 6.10 : View menu 49
Figure 6.11 : Help menu 49
Figure 6.12 : Alignment tap 50
Figure 6.13 : Result tap 51
Figure 6.14 : About tap 52
Figure 6.15 : Terminal Window 52
Figure 7.1 : Affected person mutation 54
Figure 7.2: Leukemia Mutations 55
Figure 7.3: Breast Cancer Mutation 55
Figure 7.4 : Execution times for sequences of size ranging from 1 kBP to 57
3MBP

www.manaraa.com

List of appendices

Appendix Page
Appendix A: Sample of Test Data 64
Appendix B: Sample of Java Code 70

www.manaraa.com

List of abbreviations

Abbreviation Meaning

AFALS-N An Algorithm for Finding Approximate Local Similarities in DNA Sequences
-Najah

NCBI National Center for Biotechnology Information

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

PH PatternHunter

KMP Knuth, Morris and Pratt algorithm

FLT3 Fms-related tyrosine kinase 3

AML Acute myeloid leukemia

indel Insertion or deletion mutation

URL Uniform Resource Locator

BLAST Basic Local Alignment Search Tool

www.manaraa.com

Abstract:

Finding approximate local similarities in long DNA sequences is very important in
bioinformatics .These local regions of approximated similarity may be a consequence of

functional, structural, or evolutionary relationships between the sequences.

DNA sequences, which hold the codon of life for every living organism, can be
abstractly viewed as very long strings over a four—letter alphabet of A, C, G, and T.
Proteins which use an alphabet of 20 symbols, are translations from selected stretches of
DNA, using a predefined translations table where each 3 letters of DNA translated to

one amino-acid.

Many projects to sequence the genome of some species are well advanced or calculated.
The very large number of species (and their genetic variations) that is of interest to man,
suggest that many new sequences will be revealed as the improved sequencing

techniques and analysis are deployed.

Consequently, we are at a technical threshold. Techniques that were capable of
exploiting the smaller collections of genetic data, for example via serial search, may

require radical revision.

Several techniques have been developed to address this problem. However this study
focuses not only on developing an algorithm , we also suggest advanced way to find
acceptable results with increased sensitivity and decreased computation time using

heuristics.

The proposed algorithm (AFALS-N) has been presented as an approximate local
similarities finder and as a pair wise alignment algorithm. It has been implemented

using java and tested with real DNA sequences.

The experimental results have shown that AFALS-N performed better then
PatternHunter. When Compared with PatternHunter the enhancement over execution

time was 0.9%. Also AFALS-N has achieved 66% sensitivity.

Keywords: Bioinformatics, DNA Alignment, Approximate Similarities, Heuristics, seed.

www.manaraa.com

Chapter One

Introduction

In bioinformatics, a sequence alignment is a way of arranging the primary sequences of
DNA (Deoxyribonucleic Acid), RNA (Ribonucleic Acid), or protein to identify regions
of similarity that may be a consequence of functional, structural, or evolutionary

relationships between the sequences [4].

There are many types of alignments, Local or global alignment, and multiple or pair-
wise alignments. The most important of these alignments is the combination of local
and pair-wise alignment which is a powerful tool in DNA analysis because it can
uncover the homology relationship between two sequences. And also because the nature

of small conserved regions in DNA that is conserved from mutations [32].

Finding a specific pattern in DNA is considered as a primary stage before many DNA
processing procedures. Furthermore, approximate string matching has many
applications in bioinformatics besides finding specific genes in DNA like finding

similar parts of protein , RNA [26].

Approximate string matching has many applications including data retrieval, Uniform
Resource Locator (URL) processing, language dictionaries. Therefore, the efficiency of
approximate string matching has a great impact on the performance of these

applications [9].

Approximate string matching is the technique of finding approximate matches to a
pattern in a string. The closeness of a match is measured in terms of the number of
primitive operations necessary to convert the string into an exact match. The usual

primitive operations are insertion, deletion and substitution [9].

Many algorithms have been developed to gain the optimal local alignment. Previous
algorithms use dynamic programming which always guarantee the optimal solution but
with an increase in computational time. Current algorithms use heuristics which is faster

than dynamic programming but sacrifices some of accuracy.

www.manaraa.com

The running time of dynamic programming algorithms must be cut down in order to
achieve practical run time , and the accuracy of algorithm that use heuristics must be
increased to reach optimal . This is what we offer as thesis subject , an algorithm that
finds the approximate local pair-wise alignment of DNA sequence within a reasonable
computational time that is less than dynamic programming algorithms time , and more

accurate than heuristic algorithms .We have developed this algorithm using heuristics.

1.1Scope of the Study

This study focuses on the pairwise local alignments in DNA sequences and developing

an algorithm that falls in this scope.

1.2. Aims and Objectives

Our aim in this research is to develop an algorithm that balance between the accuracy of

dynamic programming algorithms such as smith-waterman algorithm and the speed of

heuristic algorithms such as BLAST (Basic Local Alignment Search Tool).

In the proposed algorithm we tried to increase the sensitivity of finding the approximate
local similarities between two pairs of DNA sequences without increasing in time at
minimum.

1.3. Significance of the Study

This thesis serves the biologists, physicians, lab technicians and researchers who are

Interested in DNA processing.
1.4. Contributions
The research contributions may be recorded as follows:
® Proposing new algorithm which decreases the time and space needed as

compared to some of the currently used algorithms for solving the problem of

local pair wise approximate string matching.

www.manaraa.com

® Developing a tool for finding local similarities in DNA sequences.

1.5 Thesis Outline

The remaining of this thesis is organized as follows:

Chapter 2: Presents an overview of bioinformatics and approximate local similarities in
DNA.

Chapter 3: Describes previous related work.

Chapter4: Describes the methodologies that have been used.

Chapter5: Describes the proposed algorithm.

Chapter6: Describes the AFALS-N software.

Chapter7: Discusses the results of Algorithm experiments.

Chapter 8: Presents conclusions and future work.

www.manaraa.com

Chapter Two

Bioinformatics

In bioinformatics, a sequence alignment is a way of arranging the primary sequences of
DNA, RNA, or protein to identify regions of similarity that may be a consequence of
functional, structural, or evolutionary relationships between the sequences. So
alignment is equivalent to finding approximate similarities. Aligned sequences of
nucleotide or amino acid residues are typically represented as rows within a matrix.
Gaps are inserted between the residues so that residues with identical or similar

characters are aligned in successive columns [2].

There are some times unknown constraints on the sequences that cause the correct
alignment to differ from the optimal alignment given by an algorithm. Hence, it is of
some interest to produce all alignments with score within a specified distance of the

optimum score, which is called near optimal alignment [26].

Current ‘mainstream’ alignment algorithms have optimization criteria based primarily
on computational efficiency using parameters such as gap penalties, which are not
biologically motivated. In addition, current alignment algorithms such as the Smith and
Waterman technique provide a single alignment that could be sensitive to rather

arbitrary choices in parameters such as gap penalties [2].

The heuristic algorithms such as BLAST is fast but have a weakness which is that there

is a possibility of missing an alignment or giving inaccurate output [26].

The challenge in performing sequence alignments has been the tradeoff between
accuracy and efficiency .Traditional algorithms which use dynamic programming tend
to have a very high computational complexities, however manage to find the optimal
alignment. Other algorithms which use heuristics sacrifice some of this accuracy to
make the alignments faster; they find reasonably good alignments or find the optimal

alignment reasonably often [26].

Before introducing sequence alignment, there are some concepts must be discussed.

Starting with Bioinformatics, which is the broad discipline of sequence alignment, then

www.manaraa.com

DNA (Deoxyribonucleic Acid), on which we do alignment and find approximate local

similarities in DNA.

2.1 Bioinformatics

Bioinformatics is a discipline which originally arose for the utilitarian purpose of
introducing order into the massive data sets produced by the new technologies of

molecular biology [4].

Chemistry
Mathematics Biology
Statistics MOlf:Cular
biology
Bioinformatics
Computer
Science
Informatics Medicine
Physics

Figure 2.1: Bioinformatics [12].

Bioinformatics, or computational biology, refers to an emerging, interdisciplinary field
in which computer technology, including software, hardware and algorithms are applied
to solve problems arising in biology. One subject, of particular interest in the field, is to
develop tools for processing bimolecular data. These data include DNA
(deoxyribonucleic acid), RNA (ribonucleic acid), protein sequences, and their two-

dimensional (2D) and three-dimensional (3D) structures [10].

www.manaraa.com

Bioinformatics has been developed in the space, which was already occupied by a
number of related disciplines. These include quantitative sciences such as [12]:

* Mathematical and computational biology,

* Biometry and biostatistics,

* Computer science,

* Cybernetics,

As well as biological sciences such as

* Molecular evolution,

* Genomics and proteomics,

* Genetics,

* Molecular and cell biology.

2.2 Deoxyribonucleic Acid (DNA)

Deoxyribonucleic Acid, DNA, is the molecule of life. DNA is a double helix

comprising two DNA strands running anti parallel to each other and is made of many

units of nucleotides, which each consist of sugar, a phosphate and a base [28].

hmillegehons baze

Figure 2.2:DNA Components [28].

Each strand of the DNA double helix is a polymer built from four components, called
nucleotides: A, T, C, and G(the abbreviations for adenine, thymine, cytosine, and
guanine). The two strands of DNA are complementary: whenever there is a T on one

strand, there is an A in the corresponding position on the other strand; whenever there is

www.manaraa.com

a G on one strand, there is a C in the corresponding position on the other. DNA can be

represented by a sequence of these four letters, or bases [28].

Sugar
Phosphate
Backbone

Base pair

Adenine

MNitrogeous
basa

T hy mine

Guanine

Cytosine

..ACGTGACTGAGGACCGTG
CGACTGAGACTGACTGGGT
CTAGCTAGACTACGTTTTA
TATATATATACGTCGTCGT
ACTGATGACTAGATTACAG
ACTGATTTAGATACCTGAC
TGATTTTAAAAAAATATT..

Figure2.4:DNA sequencing[28].

2.3 Sequence Alignment

Alignment is one of the basic data mining and analysis methods in bioinformatics. Data

mining and analysis aims at nontrivial extraction by computational means, of previously

unknown and potentially useful information from data, or search for relationships and

patterns that exist in databases [13].

www.manaraa.com

Sequence alignment is defined as the process of lining up two or more sequences to
achieve maximal levels of similarity and the possibility of homology (sequences that

share a common ancestor) [12].

VLSPADKTNVKAAWAKVGAHAAGHG

(R I Feer
VLSEAEWQLVLHVWAKVEADVAGHG

Figure2.5:DNA sequencing[12].

The sequence alignment indicates the changes that could have occurred between two
homologous sequences and a common ancestral sequence during evolution [27].
Alignments are commonly represented both graphically and in text format [16]. In
almost all sequence alignment representations, sequences are written in rows arranged
so that aligned residues appear in successive columns. In text formats, aligned columns
containing identical or similar characters are indicated with a system of conservation
symbols [22] .

There are many ways to consider the sequence alignment :

1- Pair-wise vs Multiple sequence alignment.

Pair wise sequence alignment methods are used to find the best-matching piecewise
(local) or global alignments of two query sequences. Pair wise alignments can only be
used between two sequences at a time, but they are efficient to calculate and are often
used for methods that do not require extreme precision (such as searching a database for
sequences with high homology to a query). The three primary methods of producing
pair-wise alignments are dot-matrix methods, dynamic programming, and word

methods (Heuristic methods)[2].

Multiple sequence alignment is an extension of pair-wise alignment to incorporate more
than two sequences at a time. Multiple alignment methods try to align all of the
sequences in a given query set. Multiple alignments are often used in identifying
conserved sequence regions across a group of sequences hypothesized to be

evolutionarily related. Such conserved sequence motifs can be used in conjunction with

www.manaraa.com

structural and mechanistic information to locate the catalytic active sites of enzymes.
Alignments are also used to aid in establishing evolutionary relationships by

constructing phylogenetic trees [2].

2- Local vs global Alignment.

Global alignments, which attempt to align every residue in every sequence, are most
useful when the sequences in the query set are similar and of roughly equal size[9]. A
general global alignment technique is called the Needleman-Wunsch algorithm and is
based on dynamic programming. Local alignments are more useful for dissimilar
sequences that are suspected to contain regions of similarity or similar sequence motifs
within their larger sequence context. The Smith-Waterman algorithm is a general local
alignment method also based on dynamic programming. With sufficiently similar

sequences, there is no difference between local and global alignments [16].

Local alignment identify regions of similarity within long sequences that are often
widely divergent overall . The rationale for local similarity searching is that functional
sites are localized to relatively short regions , which are conserved irrespective of
deletions or mutations in intervening parts of the sequence . Thus , a search for local
similarity may produce more biologically meaningful and sensitive results than a search

attempting to optimize alignment over the entire sequence lengths (global alignment)

[4].

Glolbal FTEFTALILLAWVAW
F—TAL—LLA—AWV

L.ocal FTEFTALITLIL —2A0WD0T
— FTAL—LLADAYT ——
Figure 2.6:Bioinformatics [16].

Local alignment are often preferable but can be more difficult to calculate because of

the additional challenge of identifying the regions of similarity [27].

In [16] stated that local alignment are more suitable and meaningful for :

www.manaraa.com

10

1- Aligning sequences that are similar along some of their lengths but dissimilar in
others.
2- Sequences that share conserved regions or domains.

3- Sequences that differ in length.

Hybrid methods, known as semiglobal or "glocal" methods, attempt to find the best
possible alignment that includes the start and end of one or the other sequence. This can
be especially useful when the downstream part of one sequence overlaps with the
upstream part of the other sequence. In this case, neither global nor local alignment is
entirely appropriate: a global alignment would attempt to force the alignment to extend
beyond the region of overlap, while a local alignment might not fully cover the region

of overlap [32].

2.4 Approximate Local Similarities in DNA

Pattern matching occurs in various applications, ranging from simple text searching in
word processors to identification of common motifs in DNA sequences in
computational biology. The problem of exact pattern matching has been well studied
and a number of efficient algorithms exist. However these exact pattern matching
algorithms are of little help when they are applied to finding patterns in DNA
sequences. The DNA sequence search is inheritably inexact in nature because there are
acceptable equivalences of amino acids that made up of the sequence. Current inexact
pattern matching algorithms are based on four approaches: (1) Dynamic Programming;

(2) Automata; (3) Bit-Parallelism;(4) Filtering [26].

The problem of string matching is very simply stated. Given a body of text T[1...n] we
try to find a pattern P[1...m] where m <n. This can be used to search bodies of text for
specific patterns, or in biology, can be used to search strands of DNA for specific
sequences of genes. Approximate string matching is a much more complicated problem
to solve and has many more real world applications. Unfortunately, in real world
applications the problem is not so cut and dry. This is where approximate string
matching comes in. Instead of searching for the string exactly, approximate string

matching searches for patterns that are close to P. In other words approximate string

www.manaraa.com

11

matching allows for a certain amount of error between the two strings being compared.

In this research we will define this more formally later [9].

One of the earliest applications of approximate string matching was in text searching.
The approximate string matching algorithms can be applied to account for errors in
typing. Internet searching is particularly difficult because there is so much information
and much of it has errors in it. Also, since the internet spans many different languages,
errors frequently arise in comparing words across language barriers. Also, text editors
have to use approximate string matching when performing spell checks. Additionally,
spell checkers have to generate a list of “suggested words” that are close in spelling to

the misspelled word [9].

Another application of approximate string matching is in biology. As with text, ideally,
exact string matching should be effective. But in reality, DNA searching is not an exact
science. There are frequently mutations in DNA that a string matching algorithm must
account for. In fact, oftentimes these mutations are sought out because they may

indicate disease or other genetic problems [26].

2.4.1History of the Problem

The problem of approximate string matching is obviously an offspring of the much
simpler exact string matching problem. The simple brute force algorithm for exact
string matching runs in O(nm) time where n is the length of the first sequence and m is
the length of the second sequence. The first major advance in exact string matching
algorithms came in 1965 when Levenshtien [4] developed a dynamic algorithm to
compute distance in (n*m) time. That is still the premier algorithm used today. In 1970
Cooke [5] mathematically discovered that there was a possible algorithm to solve the
problem in O(n+m) time. It was Knuth, Morris, and Pratt [6] that used Cooke’s theorem

to produce an actual algorithm in 1976 [9].

2.4.2 Formal Definition

Consider two strings of text T[l..n] and P[1..m], and a distance function d(x[i..j],

y[a..b]) where x[i..j] and y[a..b] denote substrings of x and y. d(x[i..j],y[a..b]) computes

www.manaraa.com

12

the minimal cost of converting x[i..j] into y[a..b]. There are three operations we can
perform to convert x into y, each with a cost [9].

Substitution: To perform a substitution we simply take one character in x and change it
to match a character in y.

Insertion: An insertion is when a character is simply inserted into x to match the
character in y at the same position.

Deletion: This is the opposite of insertion. As the name suggests, it is the act of
removing a character in x [9].

Obviously, conversions can very easily be made through a series of m insertions at the
front of x, followed by n deletions. However, this is usually not optimal, except in the
worst case. Intuitively it’s easy to see when each of these operations would be used in
the optimal way. However, it’s much more difficult to define the optimal conversion in
a specific form .The final input to the approximate string matching problem is k, the
maximum allowable error. Then the problem is to calculate the set of P[i...j] such that

d(T[x...y].P[i...jl) <k .

2.4.3 Approximate String Matching

The need to align inexact sequence data arises in various fields and applications such as
computational biology, signal processing and text processing. In particular, in DNA
sequence analysis, exact sequence matching is rare. Due to possible DNA mutation, the
biological inference does not expect an identical match, but rather a high sequence
similarity usually implies significant functional or structural similarity [9].

Inexact pattern matching is sometimes referred as “approximate pattern matching” or
“matching with k mismatches/differences”. This problem, in the general form, can be
stated as: Given a pattern P of length m and a string (or text) T of length n (m < n), find
all the occurrences of substrings X in T that are “similar” to P, allowing a limited
number, say k, of “errors” in the “similarity” matches. The “errors” are the total cost of
transforming the pattern P so that P and X are equal. The common allowable
edit/transformation operations are insertion, deletion and substitution. The common
error model is called “edit distance”. The edit distance is the minimal number of edit

operations required to transform the first sequence into the second [9].

Inexact pattern matching algorithms can be classified into four main categories:

www.manaraa.com

13

1. Dynamic Programming Approach

This is the oldest among the four approaches and the most commonly used approach,
especially in the area of biological sequence analysis. Examples are the Needleman—
Wunsch algorithm and Smith-Waterman algorithm. These algorithms are much more
complex than the ones for exact pattern matching. It involved solving successive
recurrence relations recursively. I.e. smaller problems are solved in succession to solve
the main problem. The classical dynamic programming algorithm can also be thought of
as a column-wise “parallelization” of the automaton [26].

The major advantage of dynamic programming approach is its flexibility in adapting to
different edit distance functions. In general, the worst case complexity is O(mn). Over
the past two decades, a number of improved solutions have been proposed to lower the

worst case complexity to O(kn) and average complexity of O(kn/\/IZI) [9].
2. Automata Approach

This approach is also rather old. Though automata approach doesn’t offer time
advantage over Boyre-Moore algorithm for exact pattern matching, this approach does
offer better running time for inexact pattern matching. Both the average and worst case

performance remain O(m+n) [9].

3. Bit-Parallelism

This approach is rather new (after 1990) and is based on exploiting the intrinsic
parallelism of the bit operations inside a computer word. The basic idea is to
“parallelize” another algorithm, using bits. In general, the number of operations that an
algorithm performs can be cut down by a factor of at most w, where w is the number of
bits in a computer word. Since in current computer architectures, w is 32 or 64, the
speedup is very significant in practice. The results are especially significant when short
patterns are involved. They may work effectively for any error level [3].

The first bit-parallel algorithm is known as “Shift-Or” which searches a pattern in a text
(without errors) by parallelizing the operation of a nondeterministic finite automaton

that looks for the pattern. This automaton has m+1 states, and can be simulated in its

www.manaraa.com

14

nondeterministic form in O(mn) time. For patterns longer than the computer word (i.e.
m>w), the algorithm uses (m/w) computer words for the simulation. The algorithm is
O(n) on average. Bit-parallelism has become a general way to simulate simple
nondeterministic automata instead of converting them to deterministic form. It has the
advantage of being much simpler, in many cases faster, and easier to extend in handling
complex patterns than its classical counterparts. Its main disadvantage is the limitation it
is imposed by the size of the computer word. In many cases its adaptations for longer
pattern search are not very efficient [9].

There are two main trends in bit-parallelism approach: (1) parallelize the work of the
dynamic programming matrix; or (2) parallelize the work of the nondeterministic

automaton [3].

4. Filtering Algorithms

This approach started in 1990 and has been most very active since. Most of the new
algorithms proposed in recent years belong to this class [3]. Filtering is based on the
fact that it may be much easier to tell that a text position does not match than to tell that
it matches. It is formed by algorithms that filter the text, quickly discarding text areas
that do not match. Since the exact searching algorithms is much faster than
approximate searching ones, most filtering algorithms take advantage of this fact by
searching pieces of the pattern without errors [9].

Filtering algorithm, by itself, is normally unable to discover the matching text positions.
Rather, it is used to discard large areas of the text that cannot contain a match. Filtering
algorithms must couple with a process that verifies all those potential text matching
positions. Any non-filtering algorithm can be used for this verification. The selection is
normally independent, but the verification algorithm must behave well on short texts
because it can be started at many different text positions to work on small text areas [9].
The major interest in this approach is the potential for algorithms that do not inspect all
text characters. These filtering algorithms have a theoretical average running time
O(n(k+ log m)/m), which was proven optimal. In practice, filtering algorithms are
among the fastest too [3].

The main drawback of this approach is that the performance of filtering algorithms is
very sensitive to the error level. Most filters work very well on low error levels and very

badly otherwise. This is related to the amount of text that the filter is able to discard

www.manaraa.com

15

.When evaluating filtering algorithms, it is important not only to consider their time

efficiency but also their tolerance for errors [3].

www.manaraa.com

16

Chapter Three

Literature Review

Here, we shall look at the main algorithms: the dynamic programming algorithms by
Needleman-Wunsch and Smith-Waterman, and the heuristic approximate alignment
algorithms FASTA, BLAST and PatternHunter. We shall look at the algorithm itself
and the computational and space complexity of each algorithm. From this, we can
compare the efficiencies of the various algorithms and see what sacrifices the

algorithms make in exchange for speed.
3.1 Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm [25], published in 1970, provides a method of
finding the optimal global alignment of two sequences by maximizing the number of
amino acid matches and minimizing the number of gaps necessary to align the two
sequences. Because the Needleman-Wunsch algorithm finds the optimal alignment of
the entire sequence of both sequences, it is a global alignment technique, and cannot be

used to find local regions of high similarity [26].

In pairwise sequence alignment algorithms, a scoring function, F, must exist such that
different scores can be assigned to different alignments of two proteins relative to the
number of gaps and number of matches in the alignment. Thus, the alignment with the
largest score must be the optimal alignment. In this scoring function, let m be the score
for two residues matching, s is the penalty for mismatches, and g is the penalty for
inserting a gap. The Needleman-Wunsch algorithm realizes that the score of aligning
the entire proteins is the same as the sum of the scores of two subsequences of the
proteins, F(xi:m, yi:N)= F(x1:i, yi:j)+ F(xi+1:m, yj+1:N) where M is the length of sequence
X, N is the length of sequence y, and 1<i<M and 1<j<N. From this, we can see that the
optimal score of two partial sequences is the sum of score of residue i in sequence x and

residue j in sequence y, and the maximum score aligning the rest of the sequences [25].

The overall time complexity of this algorithm is O(MN) and the total space complexity
of this algorithm is O(MN) [24] .

www.manaraa.com

17

It is important to note here that the Needleman-Wunsch algorithm supports different
scores for exact residue matches, similar residues, and gaps. A PAM or BLOSUM
weight matrix can be used to weight residue matching scores[25]. These weighted
scores can affect the final alignment of the two protein sequences and the biological
relevance of the alignment, but will not affect the time or space complexity of the
algorithm because the number of operations will not change. This alignment is limited,
however, because it can only align entire proteins. A different algorithm was developed

to create local alignments[26].

3.2 Smith-Waterman algorithm

The Smith-Waterman algorithm was published in 1981 [29] and is very similar to the
Needleman-Wunsch algorithm. Yet, the Smith-Waterman algorithm is different in that
it is a local sequence alignment algorithm. Instead of aligning the entire length of two
DNA sequences, this algorithm finds the region of highest similarity between two
DNAs. This is potentially more biologically relevant due to the fact that the ends of
DNA tend to be less highly conserved than the middle portions, leading to higher

mutation, deletion, and insertion rates at the ends of the sequence.

Only two things were changed in the Needleman-Wunsch algorithm to obtain the
Smith-Waterman algorithm[29]. When filling the matrix, we do not let any of the matrix
values become negative,and thus we consider O as potentially being the maximum value
of the three other cases (where xi =yj, or there is a gap in x or a gap in y). By not letting
any of the values go below zero, we stop considering regions of high dissimilarity
which have no good alignments. This allows the algorithm to focus on only those
regions of the protein which are similar. The second change in the algorithm is in the
traceback. Instead of starting at the n-terminus of both sequences, we start at the cell
with the highest score in the entire matrix. This allows for the alignment of the similar

subsequences of the proteins [26].

The complexity of the Smith-Waterman algorithm can also be computed. The time
complexity of the initialization is O(M+N) because we need to initialize row O and
column 0. In filling the matrix, we traverse each cell of the matrix and perform a

constant number of operations in each cell, and thus the time complexity for this part is

www.manaraa.com

18

O(MN). Thus far, the complexity of the Smith-Waterman algorithm is exactly the same
as that for the Needleman-Wunsch algorithms. However, in the traceback, the algorithm
requires the maximum cell be found, and this must be done by traversing the entire
matrix, making the time complexity for the traceback O(MN) [26]. It is also possible to
keep track of the largest cell during the matrix filling segment of the algorithm,
although this will not change the overall complexity. Thus the total time complexity of
the Smith-Waterman algorithm is

O(M+N)+ O(MN) + O(MN) =O(MN)

which is identical to the complexity of the Needleman-Wunsch algorithm. The overall
running time of this algorithm is actually slightly slower than the Needleman-Wunsch
algorithm however, because more comparisons must be made when comparing the

scores to 0, and when finding the largest cell during the traceback [24].

The space complexity of the Smith-Waterman algorithm is also unchanged from the
Needleman -Wunsch algorithm. This is due to the fact that the same matrix is used and
the same amount of space is needed for the traceback. Thus, there is no definite space or
time advantage of one algorithm over the other. However, the Smith-Waterman
algorithm tends to model protein homology better because it ignores misalignments at
the ends of the proteins which are often not highly conserved. Thus, database searches
are usually done with the Smith-Waterman algorithm over the Needleman-Wunsch
algorithm which tends to model homology better in distantly related proteins.The
Needleman-Wunsch algorithm will tend to be better for proteins which are closely
related, with fewer mutations because the ends of the protein in closely related

sequences will not be changed significantly [26].

The overall time complexity of this algorithm is O(MN) and the total space complexity
of this algorithm is O(MN) [24].

Affine Gap Penalty

In the Needleman-Wunsch and the Smith-Waterman algorithms, there existed a constant

gap penalty, d, for a single missing or inserted residue. Thus, to insert a gap of size /, the

total penalty would be d*/. However, in biological systems, a deletion or insertion of a

www.manaraa.com

19

large number of residues may be significantly less rare than this, and thus, a different

model of gap penalties must be used [26].

Realistically, gaps of different sizes would all have different penalties, but using this
model increases the complexity of either algorithm from O(MN) to O(M2N). This is
because when computing the score of each cell, instead of finding the maximum of
three adjacent cells, we must find the number of cells to the right or down which also
are included in the gap. Thus, we must look at i+j+1/ cells, which increases the time

complexity to O(M2N) [26].

To get around this increase in complexity, we can use affine gap penalties in which the
initial gap opening penalty is set at a constant value, d, and extending the gap by a
single residue is set at a constant, lower value, e. This linear gap penalty function is
easier to deal with. In this case, we must keep track of two things for each cell in the
matrix. We must keep track of the score of the aligned subsequences x::i and yi.j plus the
score of aligning xi and y;. We can store these values in matrix F(i,j). We must also keep
track of the score of the aligned subsequences x::i and y::j plus the score of inserting a
gap at either xi or y.. We can store these values in G(i,j). Here F(i,j) is the max score
when xi and yj are aligned (either ending a gap at G(i-1,j-1), or continuing an alignment
in F(i-1,j-1)). G(i,j) is the max score when either starting a gap in F with a penalty of d

or extending a gap in G with an extension penalty of e [26].

The initialization, in this case, is also O(M+N) because row 0 and column O must
initialized to the linear gap penalty, d+(j-1)e or d+(i-1)e respectively. In the iterative
phase, we now have two matrices to fill, but each cell of both matrices still only
requires a constant number of operations. Each matrix has a time complexity of O(MN)
yielding 20(MN) = O(MN) complexity. Finally, the traceback is still O(M+N) because
it is unchanged. Thus, the total time complexity is O(MN) which is the same

as the Needleman-Wunsch and Smith-Waterman complexities [26].

The space complexity must take into account both matrices and the space needed for
traceback on both matrices. Since the space complexity of a single matrix is O(MN), the
space complexity for two matrices is 20(MN)=O(MN).Thus, the space complexity is

also unchanged. However, the actual space used is two times the space used for

www.manaraa.com

20

Needleman-Wunsch and Smith-Waterman, and the running time is also about two times
as long for the affine gap model.Thus,we see that increasing biological accuracy

involves a sacrifice in efficiency [29].

3.3 FASTA algorithm

The FASTA algorithm was developed in 1985 by Lipman and Pearson [18]. Unlike the
Needlman-Wunsch and Smith-Waterman algorithms, FASTA approximates the optimal
alignment by searching and matching k-fuples, or subsequences of length k. The
algorithm assumes that related proteins will have regions of identity, and by searching
with k-tuples, the FASTA algorithm allows small regions of local identity to be found
quickly. For proteins, these k-tuples tend to be of length two. FASTA creates a hash
table of all possible k-fuples and goes through the entire query protein of length N and
inputs the location of all the k-fuples into the table. Each k-fuple in the database
sequence can be looked-up in the hash table, and any matches will allow the algorithm
to mark the matching cells in the matrix. This results in a matrix in which all points of

local identity of length k are marked [18].

The FASTA algorithm then identifies the ten highest scoring diagonal runs by
identifying each marked point on the matrix, and adding a positive score for every other
marked cell along a diagonal, and subtracting a penalty for unmarked cells between
marked cells along the diagonal. These ten highest scoring segments are kept, and all
other segments of local alignment are discarded. The ten diagonals are scored once
again using an amino acid weight matrix (PAM or BLOSUM matrix) and any diagonals
with scores below a threshold are discarding again. The highest scoring diagonal is
termed initl. Thus, we are left with ten or fewer regions in which the two proteins align
with no gaps (although mismatches are allowed in the form of missing marked cells
along the diagonal). The FASTA algorithm assumes that the optimal alignment will

include or be near the init/ diagonal [26].

The FASTA algorithm is substantially faster than the Needleman-Wunsch or Smith-

Waterman alignments and thus can be more easily used in database queries [26].

www.manaraa.com

21

In the worst case, the time complexity of FASTA is O(MN) and the space complexity of
this algorithm is also O(MN). But the average-case complexity would be about

O(MN/20"k) .Thus, the complexity of the FASTA algorithm depends on the size of the
k-tuples, and the larger the k-tuples, the faster the algorithm. Although the FASTA
algorithm is faster than any of the previous algorithms, it is not guaranteed to find the

optimal alignment between two proteins [24] .

3.4 BLAST algorithm

The BLAST (Basic Local Alignment Search Tool) algorithm was developed by
Altschul et al.in 1990 [1] and similar to the FASTA algorithm, is also a heuristic
pairwise sequence aligner. However, the basis of the BLAST algorithm is the use of
words and High-scoring Segment Pairs (HSPs) instead of k-fuples .BLAST begins by
finding all words, or subpeptides of length w (typically 3), which exist in the protein
sequence. Using a substitution matrix, a list of other words, called a neighborhood, is
created for each word found in the protein sequence; these words must be related to the
original word and must have a substitution matrix score higher than 7, else they are not
considered. For fast access to these data, the word positions are entered into a hash
table. Each word in the database sequence can be compared to the hash table, and only
those matches which are deemed statistically significant by a statistical method will be
kept. This significantly reduces the number of hits which must be analyzed. Every
match of a word in the database sequence with one of the neighbor words is called a
High-scoring Sequence Pair (HSP) and these act as “seeds” to start a local sequence
alignment [26]. The time complexity of BLAST is O(20"W) and the space complexity
is O(20"W+MN) [24] .

3.5 PatternHunter

Ma, Tromp and Li had a quite different observation. Drawing upon ideas from the
pattern matching literature, they noted that one can find seeds in more alignments if one
requires an exact match in k positions, but does not require them to be consecutive.
Their program, PatternHunter [19] and its sequels [17], allow one to find local

alignments of either nucleotide or protein sequences, using this approach [15] .

www.manaraa.com

22

When a comparison made of PatternHunter with Blastn and MegaBlast which are an

enhanced versions of BLAST via BL2SEQ, using the most favorable parameters for

Blastn and MegaBlast and standard parameters for PatternHunter. On a computer: PIII

700Mhz, 1G main memory here are the results that shows that the PH is much faster

than Blastn [19] .

Table 3.1: PatternHunter compared to Blastn [19]

Sequence Length Blastn
816k vs 580k 47 sec 9 sec
4639k vs 1830k 716 sec 44 sec

20M vs 18M out of memory 13 min

PatternHunter

The next figures shows a comparison of PH with Megablast on long sequences and the

time and memory results .

Time required to compare Arabidopsis

chromosomes 2 and 4

tMegablast

PattemHunter l PH is much FASTER than BLAST!
| | | |

T T T T T 1

0 2000 10000 15000 20000 Seconds

Memory required to compare Arabidopsis

chromosomes 2 and 4

tegablast

PH uses less memory!

PattemHunter

0 200 400 &00 800 1000 MB

Figure 3.1 : PatternHunter compared to Megablast [19]

www.manaraa.com

23

The output quality is also on par with the default Blastn and much superior to
MegaBlast; the next figure shows a typical comparison of how alignment scores fall off

(from best to worst) [19].

10000 ————rry ————

FatternHunter ——

MegaBlast ——

-

=

=

=
T

-

=

=
T

alignment score

100 1000 10000
alignment rank

Figure3.2: PH alignment rank and score.

At default Blastn sensitivity, PatternHunter runs at MegaBlast speed, using only 1/4 of
the memory used by either program. For a genome of length N, PatternHunter requires
about 8N bytes of internal memory. When given two inputs of lengths M and N,
PatternHunter requires M+8N internal memory. Memory usage can be reduced with

PatternHunter's automatic database partitioning feature [19]

There is also a comparison of the time and sensitivity of different configurations of
PatternHunter with BLAST. In the following figure, Smith-Waterman algorithm's
sensitivity is set to be 100%. And the sensitivity curves of PatternHunter and BLAST
indicate how many of the homologies found by Smith-Waterman can be found by
PatternHunter and BLAST, respectively. The data we used in this comparison are
approximately 30k mouse EST sequences (25Mb) and 4k human EST sequences (3Mb).
According to the figure, PatternHunter with 4 seeds run at the same speed of BLAST
but with sensitivity close to Smith-Waterman [19]. PatternHunter finds a lot of

alignments not found by MegaBlast [19].

www.manaraa.com

24

PH & seeds: 996 sec
PH 4 seeds: 875 sec
PH 2 seeds: 357 sec
PH1 seed: 214 sec
BLAST: a7h sec

zengitivity

(S5earch: 20 days)

05730 3 a0 50 60 70 30 a0
alignment score

Figure 3.3: PH sensitivity [19].

We depended on patternHunter for our research results and discussion because it’s the

closest one to our work , and approved to be the best among related work in results .

www.manaraa.com

25

Chapter Four
Methodology

In this thesis we have tried to increase the sensitivity of finding the approximate local
similarities between two pairs of DNA sequences without decreasing in time at

minimum .

The sensitivity of the alignment algorithm is the key to the success of such methods .
The sensitivity of a search algorithm, however can have a crucial effect on the quality of
the annotation; different algorithms will find(and miss) different potential homologues

under different circumstances [26].

In order to achieve our objectives we have used Heuristics , Scoring Matrices , Word

length (Seed) , and String matching techniques.
4.1 Heuristics

Because of the large search space in alignment problem which may grow in an
exponential fashion we have used heuristics to reduce this search complexity by
pursuing the most promising paths in the state space. In state space search , a heuristic is
formalized as a rule for choosing those branches in a state space that are most likely to

lead to an acceptable problem solution [7].

A heuristic is a’rule of thumb,” a guideline that wasn’t proven mathematically but our
intuition /experience tells us is correct. When working under heuristic assumptions we
can not guarantee that we will get the best answer, but we will get a correct answer, and
in most cases it will be a good answer. Heuristics are usually used to improve run time

[31].

The aim of heuristic is to eliminate unpromising states and their descendants from
consideration by the heuristic algorithm in order to find a solution in a feasible
computational time .Filtration is based on the observation that a good alignment usually
includes short identical or highly similar fragments . Thus we search for short exact

matches and use these short matches as seeds for further analysis.

www.manaraa.com

26

When working with local alignments it is of interest to have an alignment with the

highest score . We eliminated alignments with negative scores and zero score.

4.2 Scoring Matrices

A two-dimensional matrix containing all possible pair-wise nucleotides scores is called
a scoring matrix. Scoring matrices are also called substitution matrices because the
scores represent relative rates of evolutionary substitutions. Scores are real numbers but

are usually represented as integers in text files and computer programs [27].

A sequence can be described in terms of the number of bits needed to specify its
message . The correspondence between two aligned sequences can be expressed in terms
of similarity/identity score [13]. Scoring penalties are introduced to minimize the
number of gaps, the total alignment score is then a function of the identity between

aligned residues and the gap penalties incurred [13].

Such matrices are constructed for:

1-Evaluating match/mismatch between any two characters.
2-A score for insertion / deletion.

3-Optimization of total score.

4-Evaluating the significance of the alignment .

The scoring scheme that we have used consists of residue substitution scores (i.e. score
for each possible residue alignment) plus penalties for gaps which is the same scheme
used by PatternHunter [19]. The alignment score is the sum of substitution scores and
gap penalties. The alignment score thus reflects goodness of alignment. An example of
a simple scoring scheme for DNA: Use ‘+1° as a reward for match, and ‘-1° as the
penalty for mismatch, and ignore gaps. Thus, for DNA we can construct the following
substitution matrix N x N for this simple scoring scheme:

- CTAG

C+1-1-1-1

T-1+1-1-1

A-1-1+1-1

G-1-1-1+1

www.manaraa.com

27

A Substitution Score is chosen for each aligned pair of letters. The matrix scores highly
identical matches of bases, and also gives 'better' scores to alignments of non-identical
bases that are similar in some way, and a 'worse' score to pairs that are very dissimilar.

The alignment score is the sum of the scores specified for each of the aligned pairs of
letters, and letters with nulls, in the alignment. The higher the alignment score, the

better the alignment.

rRange of Allgnmenl:

~
ATTGE TCAAAGA TGATGCAT
| | I | ||
GGC’AGA TGACAAGGGTATCG
Mtsmatch
S= Z(identities, mismatches) - > (gap penalties)

Figure 4.1: Alignment score [32]

The scoring scheme that we have used :
-1 for mismatch

-5 for gap opening

-1 for gap extention

+1 for matched

4.3 Word length (Seed)

If the word length is too small the computational time increase and the sensitivity will
also increase .And if the word length is large the computational time will decrease and
the sensitivity decrease. Large seeds lose distant homology while small ones creates too
many random hits which slow down the computation [19] .

In this research we tried to balance between word length and sensitivity in order to
achieve good computational time with good result. We have used the word length 9 in
the AFALS-N(An Algorithm for Finding Approximate Local Similarities in DNA
Sequences—Najah) algorithm and word length 11 as a second version of it , that to

compare it with PatternHunter which uses both word length .

www.manaraa.com

28

4.4 String Matching Techniques

Sequence alignment is a string-matching procedure. We have get benefit of using fast
string matching algorithm besides alignments technique .We have used a KMP

algorithm as a filtration mechanism to eliminate unpromising words [26].

The algorithm of Knuth, Morris and Pratt makes use of the information gained by
previous symbol comparisons. It never re-compares a text symbol that has matched a
pattern symbol. As a result, the complexity of the searching phase of the Knuth-Morris-

Pratt algorithm is in O(n) [26].

However, a preprocessing of the pattern is necessary in order to analyze its structure.
The preprocessing phase has a complexity of O(m). Since m = n, the overall complexity

of the Knuth-Morris-Pratt algorithm is in O(n) [26].

Definition: Let A be an alphabet and x =xo ... x¢.1, kK €M a string of length k over A.

A prefix of x is a substring u with

u = Xxo..x,.1 where be{0, ..k}

1.e. x starts with u.

A suffix of x is a substring u with

U = Xip oo Xi-1 where b e {0, cees k}

i.e. x ends with u.

A prefix u of x or a suffix u of x is called a proper prefix or suffix, respectively, if u +x,

i.e. if its length b is less than k.

A border of x is a substring r with

r = X0 ... Xp-1 and r = Xkb ++e Xk-1 where b = {0, cens k-l}

www.manaraa.com

29

A border of x is a substring that is both proper prefix and proper suffix of x. We call its

length b the width of the border.

Example: Let x = abacab. The proper prefixes of x are

g, a, ab, aba, abac, abaca

The proper suffixes of x are

g, b, ab, cab, acab, bacab

The borders of x are

g, ab

The border ¢ has width 0O, the border ab has width 2.

The empty string € is always a border of x, for all x £ A*. The empty string ¢ itself has

no border.

The following example illustrates how the shift distance in the Knuth-Morris-Pratt

algorithm is determined using the notion of the border of a string .

Example:

0123456789 ..

abcabcabd

abcabd
abcabd

The symbols at positions 0, ..., 4 have matched. Comparison c-d at position 5 yields a
mismatch. The pattern can be shifted by 3 positions, and comparisons are resumed at

position 5.

The shift distance is determined by the widest border of the matching prefix of p. In this
example, the matching prefix is abcab, its length is j = 5. Its widest border is ab of width

b =2. The shift distance isj—b = 5-2 = 3.

www.manaraa.com

30

In the preprocessing phase, the width of the widest border of each prefix of the pattern
is determined. Then in the search phase, the shift distance can be computed according to

the prefix that has matched[26].

Theorem [26] : Let r, s be borders of a string x, where Irl < Isl. Then r is a border of s.
Proof: Figure 1 shows a string x with borders r and s. Since r is a prefix of x, it is also a
proper prefix of s, because it is shorter than s. But r is also a suffix of x and, therefore,

proper suffix of s. Thus r is a border of s.

[I I [T 1™

|7 |7 —> EA R

|—— & —I |—— & —I |—— & —I
I x I

Figure 4.2: Borders r, s of a string x

Definition: Let x be a string and a € A a symbol. A border r of x can be extended by a,

if ra is a border of xa.

| [] |]
|—#—I |—#—
I X I

Figure 4.3: Extension of a border

Figure 3 shows that a border r of width j of x can be extended by a, if x; = a.

In the preprocessing phase an array b of length m+1 is computed. Each entry b[i]
contains the width of the widest border of the prefix of length i of the pattern
(i =0, ..., m). Since the prefix € of length i = 0 has no border, we set H[0] =-1.

Figure 4.4: Prefix of length i of the pattern with border of width bli]

www.manaraa.com

31

Provided that the values b[0], ..., b[i] are already known, the value of b[i+1] is computed

by checking if a border of the prefix py ... pi.1 can be extended by symbol p;. This is the

case if py;) = pi (Figure 3). The borders to be examined are obtained in decreasing order

from the values b[i], b[b[i]] etc.

The preprocessing algorithm comprises a loop with a variable j assuming these values.

A border of width j can be extended by p;, if p; = p;. If not, the next-widest border is

examined by setting j = b[j]. The loop terminates at the latest if no border can be

extended (j = -1).

After increasing j by the statement j++ in each case j is the width of the widest border

of po ... pi. This value is written to b[i+1] (to b[i] after increasing i by the statement i++)

[26].

Algorithm 4.1: KMP Preprocessing algorithm :

[Let m = size of the pattern, b= the border, p=the pattern,

void kmpPreprocess ()
{
int i=0, j=-1;
b[i]=3;
while (i<m)
{
while (3§>=0 && p[i]!=p[]]) J=bl[jl;
i++; J++;

bli]=3;

Example: For pattern p = ababaa the widths of the borders in array b have the following

values. For instance we have b[5] = 3, since the prefix ababa of length 5 has a border of

width 3.

jo 0123456
plil:a b abaa
b[j]:--100 1 2 3

www.manaraa.com

32

Conceptually, the above preprocessing algorithm could be applied to the string pt

instead of p. If borders up to a width of m are computed only, then a border of width m

of some prefix x of pr corresponds to a match of the pattern in ¢ (provided that the

border is not self-overlapping) (Figure 4.5)[26].

|— P — 4
I x I

Figure 4.5: Border of length m of a prefix x of pt

This explains the similarity between the preprocessing algorithm and the following

searching algorithm.

Algorithm 4.2: KMP Searching algorithm :

[void kmpSearch()
{ int i=0, j=0;
while (i<n)

{ while (j>=0 && t[i]!=p[j]) J=bljl;

i++; J++;

if (j==m)

{ report (i-j);
j=b[jl;

[Let n= size of the text, m= size of the pattern, b= the border, p=the pattern

When in the inner while loop a mismatch at position j occurs, the widest border of the

matching prefix of length j of the pattern is considered (Figure 4.5). Resuming

comparisons at position b[j], the width of the border, yields a shift of the pattern such

that the border matches. If again a mismatch occurs, the next-widest border is

considered, and so on, until there is no border left (j =-1) or the next symbol matches.

Then we have a new matching prefix of the pattern and continue with the outer while

loop.

www.manaraa.com

33

4 4
&[] J
shift ——— | []
+
&[]

Figure 4.6: Shift of the pattern when a mismatch at position j occurs

If all m symbols of the pattern have matched the corresponding text window (j = m), a
function report is called for reporting the match at position i-j. Afterwards, the pattern is

shifted as far as its widest border allows.

In the following example the comparisons performed by the searching algorithm are

shown.

Example:

0123456789 ..
ababbabaa
ababac
ababac
ababac
ababac

ababac

The inner while loop of the preprocessing algorithm decreases the value of j by at least
1, since b[j] <j. The loop terminates at the latest when j = -1, therefore it can decrease
the value of j at most as often as it has been increased previously by j++. Since j++ is
executed in the outer loop exactly m times, the overall number of executions of the
inner while loop is limited to m. The preprocessing algorithm therefore requires O(m)
steps [26]. From similar arguments it follows that the searching algorithm requires O(n)
steps. The above example illustrates this. The whole staircase is at most as wide as it is
high; therefore at most 2n comparisons are performed [26]. Since m = n the overall

complexity of the Knuth-Morris-Pratt algorithm is in O(n) [9].

www.manaraa.com

34

Chapter Five
The proposed Algorithm

5.1 Algorithm Description

The algorithm (AFALS-N) finds the regions of highest similarity between two
sequences, thus generating one or more islands of matches or sub-alignments in the
aligned sequences.

Steps of alignment algorithm:

1-Build a complete list of all words in one sequence and make this into a table.

2-For each word in the second sequence a simple lookup in the table shows every match

in the first sequence.
3-A negative score/weight is given to mismatches. Therefore, score drops (from initial
zero value) as more and more mismatches are added .Hence the score will rise in a

region of high similarity and then fall outside this region.

Scoring function for gapped alignment:

f = X match score — (mismatch score+ gap SCOre)...........c.evvvennn... (5.1)

4-The alignments are produced by starting at the highest scoring positions in the scoring

matrix and trace the path from those positions up to a box that scores zero.

The next figure shows the input and output of AFALS-N algorithm .It has two inputs

which are a DNA sequences and 3 approximate local similarity strings.

www.manaraa.com

35

Input

DNA
Sequence
1

AFALS-N

A

Algorithm

DNA
Sequence >
2

Output

A 4

Approximate local
similarities

Figure 5.1: AFALS-N Algorithm

Description of input and output

1-Input:

DNA Sequence 1: S with size n.
S={1i, 1, ..., 1n}

DNA Sequence 2: T with size m.

T= {ji,J2,- - -sJm}

2-Output:

Three alignment or approximated substrings

Wordsize=w=9 & 11

Possible words = Lm/wH ..o, (5.2)

www.manaraa.com

36

Insert two DNA Sequences

y

Generate possible words in the
second DNA sequence using
sliding window

A

Search the first sequence for exact
matches of possible words using
KMP

A

Extend the matched words

Search the first sequence using
AFALS and score found alignments

A

Show words with the highest three
scores

Figure 5.2:AFALS Algorithm Flow chart.

AFALS-N produce local alignments in four phases .In the first phase , the sequence to
be compared is partitioned .The second phase KMP is used to find exact matches . In
the third phase the candidate words are extended using gaps . Finally in the fourth phase

the maximum three alignments are selected and shown as an output of the algorithm.
Phase 1: Data Partitioning

We partition the second DNA sequence (T with size m) to Z substrings depending on
the next formula : Z = m/11 where 11 is the word size .

Next is an example of data partition where a sequence of size 44 is partitioned to 4

strings with size = 11 .

www.manaraa.com

37

AAGCGCCATA GCTCGGGCCC ACTCTCAGCC CGGGATGCAT TCCT

AAGCGCCATA G CTCGGGCCC AC

TCTCAGCC CGG GATGCATTCCT

Figure5.3 : Data partition example .

Phase 2: KMP

The inputs to the KMP algorithm are the substrings generated by phasel. And the
outputs are the candidate seeds with their indexes (the index were the KMP start to find
the seed).

The output of this phase looks like as shown in the following figure .

Candidate seeds indexes
AAGCGCCATA G 1
TCTCAGCC CGG 22

Figure5.4 : KMP output example .

Phase 3: Gap Extension

A gap is a maximal consecutive run of spaces in a single string of a given alignment. It
corresponds to an atomic insertion or deletion of a substring [26].Gap extension is the
process of inserting gaps wherever there is a mismatch.

www.manaraa.com

38

The penalty of gap is -5 and for gap extension it is -1 . When there is a mismatch gap is
inserted and score is decremented .If the score falls than K the extension will stop and

the word is discarded from candidates .

K is the similarity score which must not be less than 90% .The allowable number of
mismatches is 10 %.That because the mean number of wrongly inferred indels and gap
character states increases with substitution rate for closely related sequences , the error
segments are short and frequently result from a single indel being erroneously
positioned . As the two sequences farther diverge , the errors multiply. At the same time,
neighboring indels in the true alignment being inferred with one another produce
several segments where several indels are simultaneously misplaced . At the higher
divergence rates , the error segments get longer and longer , with relatively short
intervening correct segments , until almost the whole reconstructed alignment consist of

error segments [26].

If the KMP finds the word it saves it in a table with the specified index. At phase 3 gap
extension will start .It will use the indexes that have been saved in the phase 2.

Here is the pseudo code for this phase

Algorithm 5.1: AFALS-N Gap extension algorithm:
Let w := 11 //word size
Let score is the alignment score //initialized to word size
Letk :=0 //mumber of allowed mismatch
Get List of candidate words index from Kmp result table
For index :=1 to K>10% of the score //number of matches
If character[index+w]:=character[seedIndex+w]
score+=1
gap_start := false
If character[index+w]!=character[seedIndex+w]
score +=-1
If gap_start := false
score+=-5
gap_start : =true
Else Score+= -1

Next index

www.manaraa.com

39

Phase 4: Output Selection

The aligned substrings that have the maximum three score will be shown in the result

screen.

Example :

The input of the AFALS-N algorithm is the next two DNA sequences:
Sequence 1: aaacctggagcacgaacctgccaccceececcgggtttcag
Sequence 2: aaacctggagcaaaaacctgee

Phase 1 output:
In phase 1 the second sequence is partitioned to seeds of size 11 as shown next.

Seedl: aaacctggagc size=11
Seed2: aaaaacctgce size=11

Phase 2 output:

In phase 2 kmp searches for seeds in the first sequence and save the index where the
match starts. In this example it only found one match for the first seed and save the
index for the next phase use.

aaacctggagc index: 1
Phase 3 output:

In gap extension phase wherever there is a mismatch a gap is inserted and the penalty
of a mismatch and a gap is added to the score.

aaacctggagcacgaacctgccacccceececcgggtttcag
aaacctggagca- -aacctgcc

score = 11

score+=1 match
score+=-1 mismatch
score+=-5 gap open
score+=-1 mismatch
score+=-1 gap extension
score+=1 match
score+=1 match
score+=1 match
score+=1 match
score+=1 match
score+=1 match
score+=1 match
score+=1 match

www.manaraa.com

40

Score = 12

The output of this phase is:
aaacctggagca- -aacctgcc
and its score (12)

Phase 4 output :

Since there is one alignment it is the only output with its score .

Algorithm Time and space complexities

In the phasel the algorithm needs m/w space , same in the phace2 and phace3 , so the

space complexity for AFALS-N algorithm is O(m) since w is a constant.

Time complexity for KMP is O(n), and for phase3 is O(zm) w here z is the number of

candidate words . So the overall AFALS-N complexity is O(n +z m).

www.manaraa.com

41

Chapter Six
AFALS-N Software

AFALS-N software is a demonstration for the AFALS-N algorithm . It was built using
java .In the next pages we presented to the development model , the implementation of

this software , and the interface screen shots .
6.1 Software Development Model

A software process is a framework of activities that are required to develop software. A
software process model is a development strategy that encompasses the process,
methods, tools and generic phases used during the development of software In other
words, a software process model is an abstraction, which is used to describe the steps

involved in a software process [21] .

We have chosen to use a modified Waterfall Model as a standard software process

model that we can follow for the development of this project.

The waterfall model is the classic model of software engineering. It has deficiencies, but
it serves as a baseline for many other lifecycle models.The pure waterfall lifecycle
consists of several non-overlapping stages, as shown in Figure 6.1. It begins with the
software concept and continues through requirements analysis, architectural design,

detailed design, coding, testing, and maintenance [30].

www.manaraa.com

42

System requirement

Software requirement

Analysis

Design

Coding

Testing

Maintenance

Figure 6.1: Classical Waterfall Model [30].

The waterfall model does not prohibit returning to an earlier phase, for example, from
the design phase to the requirements phase. This leeds to many versions of modified

waterfall model [30].

These modifications tend to focus on allowing some of the stages to overlap, reducing
the documentation requirements, and reducing the cost of returning to earlier stages to
revise them. Another common modification is to incorporate prototyping into the

requirements phases [21].

Overlapping stages such as requirements and design make it possible to feed

information from the design phase back into the requirements.

www.manaraa.com

43

System requirement

Software requirement

Analysis

Design

Coding

Testing

Maintenance

Figure 6.2: Modified Waterfall Model [30].

e System requirements—Establishes the components for building the system. This
includes the hardware requirements (number of channels, acquisition speed, and

so on), software tools, and other necessary components.

e Software requirements—Concentrates on the expectations for software
functionality. You identify which of the system requirements the software
affects. Requirements analysis might include determining interaction needed
with other applications and databases, performance requirements, user interface

requirements, and so on.
¢ Architectural design—determines the software framework of a system to meet

the specified requirements. The design defines the major components and the

interaction of those components, but it does not define the structure of each

www.manaraa.com

44

component. Also determine the external interfaces and tools to use in the

project.

e Detailed design—examines the software components defined in the
architectural design stage and produces a specification for how each component

is implemented.

¢ Coding—Implements the detailed design specification.

e Testing—determines whether the software meets the specified requirements and

finds any errors present in the code.

We have used black box testing. Black Box Testing is not a type of testing; it instead is
a testing strategy, which does not need any knowledge of internal design or code etc. As
the name "black box" suggests, no knowledge of internal logic or code structure is
required. The types of testing under this strategy are totally based/focused on the testing
for requirements and functionality of the work product/software application. Black box

testing is sometimes also called as "Opaque Testing", "Functional/ Behavioral Testing"

and "Closed Box Testing" [30].

The base of the Black box testing strategy lies in the selection of appropriate data as per
functionality and testing it against the functional specifications in order to check for
normal and abnormal behavior of the system. Nowadays, it is becoming common to
route the Testing work to a third party as the developer of the system knows too much
of the internal logic and coding of the system, which makes it unfit to test the
application by the developer [21]. In order to implement Black Box Testing Strategy,
the tester is needed to be thorough with the requirement specifications of the system and
as a user, should know, how the system should behave in response to the particular

action.

¢ Maintenance—Perform as needed to deal with problems and

enhancement requests after the software is released.

www.manaraa.com

6.2 Implementation

The algorithm implementation has been done using Java language, because of the built

in String classes and methods and its platform independent . Using a cross-platform and

object oriented ease of development of the Java programming language we have built a

simulation to AFALS-N algorithm .

We choose the Bluel version 1.3.5 as a coding environment . BlueJ is an integrated

Java environment specifically designed for introductory teaching.

BlueJ: My thesis
Project Edit Tools Wiew

M] About Blue.

| ——1 BlueJwversion 1.3.5 (Jawvawversion 1.5.0_17)

Running on: Windows XP 5.1 (x86)

Carr
| Jdawva Home: cihprogram files\javaljdk1 .5.0_1 7 jre

Debug log file: CADocuments and Settingsikelbluejibluej-debudgliog bt

The Bluediteam at Dezaioin Universily
Andrew Fatterson, Bruce Quig,

The Bluediteam at Kent Universify
Damiano Ealla, lan Utting

More information is atwesee blugj org.

| “irtual machine: dava HotSpotThi) Clienth 1.5.0_17-b04 {Sun Microsystermns Inc)

ﬂ John Rosenherg
The BluaJ tearn at the Universiy of Solthern Denrmark
- asper Fisker, Poul Henriksen,

blue_]'org Wichael Kalling

- O X
Help

X

Figure 6.3: BlueJ Screen .

Bluel supports:

B fully integrated environment

B graphical class structure display

B graphical and textual editing

B built-in editor, compiler, virtual machine, debugger, etc.

B casy-to-use interface, ideal for beginners

www.manaraa.com

46

interactive object creation
interactive object calls

interactive testing

incremental application development

The AFALS-N software has two classes ; The MainWindow class which has the main
functionality and components , and the Test class which has been used to create objects

from MainWindow classs .

BlueJ: M theds
Proget Edt Tools View Hel

B Ve

Maihindow | | Test

Nt Class,

_—

Figure 6.4 : Classes in AFALS-N

www.manaraa.com

47

Ef MainWindow - O
Class Edit Tools Options

| Compile || Undo || Cut || Copy || Faste || Find... || Find Mext || Close | |Imp|ementati0n |V|

import jawax.swing. JFrame; -
import jawax.swing. JTabbedPane; |
import javax.swing. JLabel;

import jawax.swing. JPanel;

import jawax.swing. JEutton;

import jawax. swing. SvingConstants:
import jawa.awt.*:

import java.awt.event.¥;

import jawax.swing. ¥ :

import jawax.swing.border.#:
import jawax.swing. ewvent.¥;

J,-’ﬂ'ﬂ'

* An Algorithm for Finding Approximate Local 3imilarties in DNA Sequences.
* AFALZ-N

* [author (Najah Alshanableh)

* [Bweraion (May 2009)

e

public class MainWindow extends JFrame

{

A4 Variahles declaration
priwate JPanel contentPane;

private JButton btnResult;
priwate JButton btnExit;
priwvate JEutton btnClear:
priwate JButton btnCancel:
priwate JButton btndlign:
priwate JPanel prnlOCi;

[«]

L] Il 1ol

Figure 6.5 : MainWindow Class .

Class Edit Tools Options

| Compile || Unda || Cut || Capy || Paste || Find... || Find Mext || Close ||Imp|ementation|7|

import Javax.swing.JFrame:
Lt
* &n Algorithm for Finding Adpproximate Local ZFimilarties in DH& Sequences.
* AFALS-N
* @author (Najah Alshanahleh)
* [@Awersion (May Z009)
=4
public class Test
{

public static woid maini String args[])

MainWindow menuFrame = new MainWindow():; // create MenuFrame
memaFrame . setbefaultCloselperation| JFrame.EXIT ON_CLOSE) ;
mermFrame . setiize 700, 700): /F zet frame =zize
menuFrame . setVisible| true 1: /F display frame

P44 end main

Figure 6.6 : Test Class .

www.manaraa.com

48

6.3 User Interface Screens

The user interface of the system has been designed based on the description of the
AFALS-N algorithm . A description of the user interface design and coding is shown

below and in the next few pages .

Building the user interface in java is difficult since every thing need programming .The
basic user interface component is the “form”. It contains all the controls that form the
shape of each screen. During the development phase, built in controls (that are provided
by the programming language itself) have been used to form up the final shape of the

system screens. Those include text boxes, buttons, labels, panels and tapped pane.

2 AFALSH .o
File Edit ‘iew Help
Alignment | Result | About |

GAAGAGGACGAGGAAGAMAGCTGGAGGATGAT GATAAGTCAGAAGAGTCTTCCCAGC CGGAMGCAGGAG -
CTGTCTCTAGAGGGAAGAATTTTGAT GAAGAGAGCAATGCTTCCATGAGCACTGCTAGG GATGARACCCG
AGATGGATTCTACATGGAGGATGGAGAC COUCGCAGTAGCTCAGCTCCTTCATGAGAGAACATTTGCCTTC
TCATTTTGGCCTAAGGATCGAGTAAT GATAAG CAC GAGCTGAGCCAGGCTCTGTGATCCTCTGGTGGAGGC
CCGTCACCATCTGGTGTCAGGGEACCCTGGAGGUCCAAGAGTACCGTCTGGATAAAGAGGGAAGTGTATC
CGGEGACAAGGCCAAGTTCTCCAT CACATACATGACAGAGCAATATGCAGGGCGATATCACTGTTACTAT
CTCATCCGCACTGECTGETCAGAGCACAGTGACCCCCTGGAGCTGGTEATGACAGGAGCCTACAACARAT
CCTCCCTCTCAGCOCTGCCAAGCCCTOTGGTEACCTCAG GAGGGAAC GTGACCCTCCAGTGTGACTCATG
GTGGGGATCTGACAGATTCATTCTGACTAAGGAAG GAGAACACCAGCCCTCCTGGATCCTGGACTCACAG
COAGACCTTGATGGGCAATCCCAGGCCOCTETTCACTGTGGECOCTATGACCCOCAAC CACAGGT GGATAT
TCAGATGCTATGGUTGTAACAGGAACTACCCCCAGGTGTGGTCAAAACCCAGTGATCCUGTGGAGCTTA
GOACGAGGAGAATTGCTT TATAAT GAGARAGAMATAGTCGTGCATCTGAATTTTCGTCTAG GEAGANACA
CAARAGACTTGATGTGAMATGTTGTCCTCARAC CTAGARATGTGTATTGTCTAACTTCTCAAAAT GGACAA _—
ATTAGGGCCAAGCTGATAMAGT CCAC GAAGGGAGGAGGTCACAGATGETTCTGGCCGEECECTTGETCAG =
T TS T T TS S T s S S T S S T T A S A TS A S T A S S A TS T T O A S A A TS A >

GEUCCAAGAGTACCGTCTEGATAAAGAGG GAAGTGTATCAC CCTGGGACAGACAGAGCCCACTGEAGTC
CGEEGGACAAGGCCAAGTTCTCCATCACATACATGACAGAGCARTATGCAGGGCGATATCACTGTTACTAT
CTCATCCGCACTGGCTGETCAGAGCACAGTGACCCOCTEGAGUTGETGATGACAGGAGC CTATAACAALT
CCTCCCTCTCAGCCCTGUCAAGCCOTGTGGTGACCTCAGGAGGGARACGTGACCUTCCAGTGTGACTCATG
GTGGEEGATCTGACAGATTCATTCTEACTAAG GAAGGAGAACACCAGCCCTCCTEGATCCTG GACTCACAG
CCAGACCTTGATGGGLAATCCCAGGCCCTEHTTCACTGTGGGECCCCATGACCT

Align | | Show Res... | | Clear ‘ ‘ Cancel ‘ ‘ Exit

www.manaraa.com

oL fyl_llsl

49

Figure 6.7 : AFALS-N screen .

User Interface Parts :

A-Menu bar

The menu bar contains four menus :

1-File Menu

= AFALS-H
File | Edit View Help

Hew

Open
Save
Exit

Figure 6.8 : File menu

2-Edit Menu

[= AFALS-H
|
I
[

Edit | View Help
Alig Clear e
r

Figure 6.9 : Edit menu
3-View Menu

= AFALS-H
File Edit | Yiew | Help

Alignmen showResult jout |

Figure 6.10 : View menu
4-Help Menu

' = AFAL3-H

File Edit View |Help
:]
Figure 6.11 : Help menu

Ol LaCu Zyl_i.lbl

www.manaraa.com

50

B-Alignment Tap

This tap is the default tap shown once we run the AFALS-N software . It consists of two
text area for the two DNA inputs .It also has five buttons for the basic operations .
-Align Button : Its start the alignment operation once its clicked.

-Show result Button: Shows the result .

-Clear Button : Clear the text areas.

-Cancel Button: Stop the alignment operation before it finished.

-Exit Button : Close the software screen .

= AFALSH O X
File Edit View Help
" Alignment | Resutt | About |

GARGAGGACGAGGAAGAMMAGCTGGAGGATGATGATAAGTCAGAAGAGTCTTCCCAGCCGGAAGCAGGAG -
CTGTCTCTAGAGGEAAGRAATTTTGATGAAGAGAGCAATGCTTC CATGAGCACTGCTAGGGAT GARACCCG
PGATGGATTCTACATG GAGGATGEAGAC COCGCAGTAGCTCAGCTCCTTCATGAGAGARCATTTGCCTTC
TCATTTTGECCTAAGGATCGAGTAATGATAAGCAC GABCTGABCCABGCTCTETBATCCTCTGGTEGAGGC
CCGTCACCATCTGGTGTCAGGGLACCCTGEAGGCCCAAGAGTACCOTCTG GATAAAGAG GLAAGTGTATC
CGGGGACARGGCCAAGTTCTCCATCACATACATGACAGAGCARTATGCAGGGLGATATCACTGTTACTAT
CTCATCCGCACTGGCTGGTCAGAGCACAGTGACCCCCTGGAGLTGETGATGACAGGAGCCTACARCARAT
CCTCCCTCTCAGCCCTGCCAAGCCCTGTGGTGACCTCAG GAGG GAAC GTGACCCTCCAGTGTGACTCATG
GTGBGEGATCTEACAGATTCATTCTBACTAAGGAAG GAGAACACCAGCCCTCCTGGATCCTBGACTCACAD
CCAGACCTTGATGEGLAATCCCAGG CCCTGTTCACTGTG GG CCCCATGACCCCCAACCACAGETGGATAT
TCAGATGCTATGGCTGTAACAGGAACTACCCCCAGGTGTGOTCARAACCCAGTGATCCCGTGGAGCTTA
GCACGAGGAGART TG CTTTATAAT GAGASAGAAATAGTC GTGCATCTGAATTTTCGTCTAGG GAGARACA
CARAGACTTGATGTGAAATGTTGTCCTCARMAC CTAGAAATGTGTATTGTC TAACTTCTCASAATG GACAA

ATTAGGECCAAGCTGATARAGTCCAC GAAGGLAGGAGGTCACAGATEGTTCTGGCCGGECGCTTGGETCAG
ST TEOC T T AT AGETARARA S A AT AT ARATRARGTCAGC S GCATESCTOC ST AR A A TS A hd

GGLCCAAGAGTAC COTCTGHEATAMMGAGG GAAGTGTATCAC CCTGG GACAGACAGAGCCCACTGGAGCC
CGEGGACAAGGCCAAGTTCTCCATCACATACATGACAGAG CARTATG CAGG G GATATCACTGTTACTAT
CTCATCCGCACTGGCTGGTCAGAGCACAGTGACCCCCTGGAGLTGETGATGACAGGAGCCTACARCAMAC
CCTCCCTCTCAGCCCTGUCARGCCCTGTGGTGACCTCAGGAGGGAACGTEACCCTCCAGTGTGACTCATG
GTGGGGATCTGACAGATTCATTCTGACTAAGGAAG GAGAACACCAGC CCTCCTEGATC CTGGACTCACAG
CCAGACCTTGATGGGCAATC L CAGGCUCTETTCACTGTGGGCTCCATGACGT]

Align Show Res... Clear Cancel Exit

www.manaraa.com

51

Figure 6.12 : Alignment tap
B-Result tap
This is the second tap that shows the resulted alignment . It consist of three text boxes

with its aligned score .

= AFALS-H
File Edit View Help
Alighment | Result | About |

PAGAGTACCGTCTGGATAAAGAGGGAAGTGTATC COGGGACAAGGCCAAGTTCTCCATCACATACATGACAGAG CAATATGCAG

TCTACATARAGAGGGAAGTGTATC CGGGGACAAGGLCAAGTTCTCCATCACATACATGACAGAGCAATATGCAG

CTGGATARAGAGGGAAGTGTATS CEGGGACAAGGCCAAGTTCTCC

Figure 6.13 : Result tap

C-About Tap
It’s the final tap of AFALS-N software that shows general info about the software .

www.manaraa.com

52

= AFALS-H = O
Hle Edit View Help
[Alignment | Result | About |

Al al-Bayt University
Prince Hussien bin Abdullah Collage of Information and Technology
Computer Science Department

An Algorithm for Finding Approxzimate Local Similarties in DNA Sequences (AFALS-N)

By : Najah Alshanableh
Supervisor: Mamoun Al-Rababaa

Figure 6.14 : About tap .

D-Terminal Window

This terminal window shows the elapsed time for the alignment process .

Alignment [Result | About |

GAAGAGGADGAGGAAGAMAAGCTGEAGGAT GAT GATAAGT CAGAAGAGTCTTOCCAG GO G GEAMGE CAGGAG gl

CTGTCTCTAGAG _ q
G AT G AT T T A E BlueJ: Terminal Window - Hy thesis

TCATTTTGGECCTAL Options:
CCETCACCATCT
CGEGEGCACARMGG
CTCATCCGECACTY AFALS aLGORITHM IS NOW WOREIMG , PLEASE TWAIT FOR RESULT TO BE SHOWN
ST TTCTCAGH Elapsed milliseconds: 11

GTGGGGATCTGA

A ST TEAT

TCAGATSCTATG

A GA G GAGAR

A G AT TEAT G

AT TASGECCANG

GGG CAMG AT
2G5 G AT ARG G
CTOATCCECACT!
CCTCOCTOTCAS
TG EATCT G
CCAGAC T TGAT

Figure 6.15 : Terminal Window .

www.manaraa.com

53

Chapter Seven

Results and discussion

In this chapter we analyze the simulation results that we obtained for different
sequences that we consider so as to measure the performance of the proposed algorithm.
We have tested the algorithm for different DNA sequences and compare it with

PatternHunter results.
7.1 Test environment

The proposed algorithm was implemented in Java .Real DNA sequences obtained from

the NCBI (National Center for Biotechnology Information), web page

(http://www.ncbi.nlm.nih.gov/) were used in the tests . Sample of the sequences are

presented in table 7.1 below.

Table 7.1: Organisms compared

Approx Real size Seq number Name

size

1 kBP 1440 BP NC_004991 Acetobacter Pasteurians

1 kBP 1743 BP NC_005026 Bacteroides Fragilis

10 kBP 10,035 BP AF133821 HIV-1 isolate MB2059 from Kenya
10 kBP 10,280 BP AY352275 HIV-1 isolate SF33 from USA
50 kBP 56,574 BP AF494279 Chaetospheridium globosum
50 kBP 57,473 BP NC_001715 Allomyces Macogynus

150 kBP 162,114 BP NC_000898 Human Herpesvirus 6B

150 kBP 171,823 BP NC_007605 Human Herpesvirus 4

500 kBP 542,869 BP NC_003064 Agrobacterium tumefaciens
500 kBP 563,165 BP NC_000914 Rhizobium sp.

1MBP 1,044,459 BP | CP000051 Chlamydia trachomatis

1MBP 1,072,950 BP | AE002160 Chlamydia muridarum

3MBP 3,147,090 BP | BA0O00035 Corynebacterium efficiens
3MBP 3,282,708 BP | BX927147 Corynebacterium glutamicum

www.manaraa.com

54

7.2 Sensitivity analysis

Sensitivity analysis is the study of how the variation in the output of an algorithm can
be apportioned, qualitatively or quantitatively, to different sources of variation in the

input of that algorithm.

In order to analyze AFALS-N sensitivity we have selected two known mutations with

known DNA as an input to the algorithm . These mutations are FL'T3 and BRCA.

Mutation detection is increasingly undertaken as a tool for a wide spectrum of research
especially in cancer diseases , disease association and clinical diagnostics. The
pharmaceutical industry spends billions of dollars to locate the mutated genes associated

with particular diseases.[13]

Unaffected person

ATCATCTTTGGTGTT

Unaffected person

ATCATCTTTGGTGTT

Affected person

ATCATT__ _GTTGTT

Figure 7.1 Affected person mutation [13] .

An example of such mutations is the FLT3 (Fms-related tyrosine kinase 3) mutation
which responsible for leukemia disease . FL'T3 is the most commonly mutated gene in

human acute myeloid leukemia (AML) and has been implicated in its pathogenesis [23].
The clinical identification of FLT3 mutations in a prospective manner will yield
important information about the incidence and natural history of FLT3 mutations in

AML [14].

In addition, identification of FLT3 mutations is likely to become important for

optimization of patient care. Because FLT3 I'TD mutations portend a worse prognosis, it

www.manaraa.com

55

has been proposed that patients testing positive for a FLT3 mutation may benefit from
aggressive up-front treatment regimens such as an allogeneic bone marrow
transplantation. On-going clinical trials will determine whether AML patients with
FLT3 mutations will also benefit from novel therapeutic strategies that target and inhibit

FLT3 tyrosine kinase activity [14].

!" “ H T

ll n il
8% 28 oo ae ‘ e

1% 21

46, XY (89 22:[:;23 q:n qf n

Figure7.2: Leukemia Mutations [20].

Germline mutations in breast cancer susceptibility genes, BRCA1 and BRCA2, are
responsible for a substantial proportion of high-risk breast and breast/ovarian cancer

families [6].

Breast cancer is the most commonly diagnosed cancer in women in world today. A
family history of the disease in a first degree relative significantly increases the risk of
disease. A segregation analysis demonstrated the existence of an autosomal dominant

pattern of inheritance accounting for 5-10% of breast cancer cases [6].

MCF7 (79)

Figure 7.3: Breast Cancer Mutation [6].

www.manaraa.com

56

We have used 50 DNA sample of infected people who has a leukemia or a breast
cancer. AFALS-N was able to catch the mutation for 33 person .That means that the
sensitivity of this algorithm is 0.66 .

Sensitivity = a/b ..o (7.1)

where a is the number of cases that the algorithm catch and b is the number of the whole

cases considered in the testing .

7.3 Execution Time Evaluation

Behavior of algorithm with inputs of arbitrary length is shown in the following table.
The execution times according to the size of the sequences are presented in the table 7.2
below . AFALS-N has shown an acceptable execution time over different sequence

length .

Table 7.2 : Execution times for sequences of size ranging from 1 kBP to 3MBP

Sequence Size Execution time(Milliseconds)
1 kBP 225

10 kBP 543

50 kBP 878

150 kBP 1180

500 kBP 1809

IMBP 2050

3MBP 8701

Figure 7.1 shows the ratio between execution time and sequence size. We can notice
from the next chart that the behavior of AFALS-N algorithm under input size increase

tend to be stable even when the sequences size increased dramatically .

www.manaraa.com

57

Execution times for sequences of size ranging from
1 kBP to SMBP
2500
2000 -
1500 - S S— E.XeCUtIOI”I
time(seconds)

1000 - —ma—— Sequence Size

500 -

O |
1 3 4 5 6

Figure7.4 :Execution times for sequences of size ranging from 1 kBP to 3MBP

7.3 Comparison with PatternHunter

In order to verify the quality of the results produced by AFALS-N , we have compared

it with PatternHunter .

Comparing to PatternHunter , AFALS-N with word size 9 achieved a better time as

shown in the table7.3 . The enhancement ratio is around 0.9 % .

Enhancement in execution time (F) computed by the equation 7.2 which is shown next

and sample execution time result is shown in table 7.3 .

F= average (AFALS-N execution time / PatternHunter execution time).............. (7.2)

Table 7.3 : PatternHunter vs AFALS-N

Sequence Length PatternHunter AFALS-N

816Kk vs 580k 9 sec 7.5 sec
4639k vs 1830k 44 sec 38.6 sec
20M vs 18SM 13 min 10.3 min

Also when we changed the word length from 9 to 11 AFALS-N performs better than
PatternHunter as shown in the next table with enhancement ratio = 0.85 . Table 7.4

shows sample of the comparison made between PattternHunter and AFALS-N.

www.manaraa.com

58

Table 7.4 : PatternHunter vs AFALS-N(word size 11)

Sequence Length PatternHunter AFALS-N

816k vs 580k 7 sec 6 sec
4639k vs 1830k 39 sec 34.6 sec
20M vs 18SM 11 min 9 min

www.manaraa.com

59

Chapter Eight

Conclusion and Future Work

8.1 Conclusion

In this thesis we have suggested an Algorithm for Finding Approximate Local
Similarities in DNA Sequences (AFALS-N) and it was presented as an approximate
local similarities finder and as a pairwise alignment algorithm. It has been implemented

using java and tested with real DNA sequences.

The experiments have shown that the performance of AFALS-N was better than the
other algorithms mentioned in this study .When Compared with Pattern Hunter the

enhancement over execution time was 0.9%.

AFALS-N can also be used for non DNA data comparisons, like protein or amino acids
comparisons. Besides that it can be used for non biological string data approximate

matching.

A windows application for AFALS-N algorithm has been built using java , and it will
be applied in King Hussein Cancer Center in the Molecular Diagnostics and
Immunogenetics section .

8.2 Future work

As a future work we will consider different techniques to enhance AFALS-N

performance and usability.
We may consider a better candidate selection or verification techniques to reduce the
number of candidates or the verification time. Nonconsecutive models for words may

considered in order enhancing AFALS-N sensitivity.

The AFALS-N algorithm can be extended to be used in the biological database search

or connected to a server and modified to a web version.

www.manaraa.com

60

References

1- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. "A Basic
Local Alignment Search Tool ", J.Mol.Biol.215,403-410 , 1990.

2-Andreej Poloski and Mark Kimmel , Bioinformatics , Book , Springer ,2007 .

3- Costas S. Iliopoulos and Thierry Lecroq , String Algorithmics , Book ,King's
College London Publications, 2004.

4-Dan E.Knan and Michael 1.Raymor , Fundamental Concept of Bioinformatics

,Book ,Benjamin Cummings ,2003.

5- Dimitris Papamichail , " Improved algorithms for approximate string matching "

, BMC Bioinformatics , vol 10, Suppll , 2009 .

6- Eva Machackova, Jiri Damborsky, Dalibor Valik, and Lenka Foretova ," Novel
Germline BRCA1 and BRCA2 Mutations in Breast and Breast/Ovarian Cancer
Families" , HUMAN MUTATION Mutation in Brief #459 ,WILEY-LISS, INC, 2001.

7-George F.Luger , Artificial Intelligence , Book , Adison Wesley , 2002 .

8- Giddy Landan and Dan Graur , "Characterization of pairwise and multiple

sequence alignment errors " , Gene , doi:10.1016 , 2008 .

9- Hyyro Heikki , Practical Methods for Approximate String Matching , Book

, Tampereen yliopiston laitosten julkaisut , 2003 .

10-Jason wang and Katherine Herbert , "Software engineering and knowledge

engineering in bioinformatics", Bioinformatics ,vol 20 , no 3, 2000.

11- Jean Claverie and Cedric Notredame , Bioinformatics for dummies , Book , Wiley

Publishing ,2007 .

www.manaraa.com

61

12- Jeff Augen , Bioinformatics in the post genomic era , Book , Addison-Wesley ,
2007 .

13-John Micheal , Computational Biology , Book ,Chapman and Hall , 2005.

14- Kathleen M. Murphy, Mark Levis, Michael J. Hafez, Tanya Geiger, Lisa C. Cooper,
and B. Douglas Smith, " Detection of FLT3 Internal Tandem Duplication and D835
Mutations by a Multiplex Polymerase Chain Reaction and Capillary
Electrophoresis Assay " , Journal of Molecular Diagnostics, Vol. 5, No. 2, May 2003.

15- Kisman, D., M. Li, B. Ma, and L. Wang. "tPatternHunter: gapped, fast and

sensitive translated homology search", Bioinformatics, vol 12, page 321-325 ,2005

16-Lesy Vinh and Ward C. Wheeler ," Pairwise Alignment with Rearrangements" ,

Genome Informatics , vol 45 , 2006.

17- Li, M., B. Ma, D. Kisman, and J. Tromp , "PatternHunter II: Highly Sensitive
and Fast Homology Search "', Journal of Bioinformatics and Computational Biology ,

vol 14,164 -175 ,2003 .

18- Lipman, D.J. and Pearson, W.R. " Rapid and Sensitive Protein Similarity
Searches" .Science . vol 11, page 446-448 ,1985.

19- Ma, B., J. Tromp, and M. Li . "Patternhunter: Faster and more sensitive

homology search "', Bioinformatics , vol 18, no 3 , page 440-445 ,2002 .

20- Maxime Crochemore , Christophe Hancart , and Thierry Lecroq , Algorithms on

Strings , Book , Springer ,1992 .
21- Mazza and Nelson, Software Engineering Standards, book ,Prentice-Hall, 1994.

22-Michael S.Waterman , Introduction to computational Biology , Book ,Chapman
and Hall , 2003.

www.manaraa.com

62

23- Michele Malagola , Michela Rondoni , Costanza Bosi, Michele Baccarani , and
Giovanni Martinelli , " Rapid Detection of FIt3 Mutations in Acute Myeloid
Leukemia Patients by Denaturing HPL.C ", Clinical Chemistry , vol 49:10
1642-1650 , 2003 .

24-Nadia Essoussi and Sandes Fayech , "A comparison of four pair-wise sequence

alignment method" . Bioinformation , vol 2(3): 166-168 ,2007 .
25- Needleman, S. B. and Wunsch, C. D. "A general method applicable to the search
for similarities in the amino acid sequence of two proteins" , J. Mol. Biol. 48, 443-

453, 1970.

26- Neil C. Jones and Pavel A. Pevzner ,An introduction to bioinformatics

algorithms ,Book , Massachusetts Institute of Technology ,2004.

27-P.Narayanan , Bioinformatics a primer , Book , New age international publishers ,

2006.

28-Pamela C.Chompe and Richard A.Harvey , Biochemistry , Book , Lippincott
Williams and Wilkins ,1994.

29- Smith, T. F. and Waterman, M. "Identification of common molecular
subsequences" , J. Mol. Biol. 147, 195-197,1981.

30- Sommerville I, Software Engineering, Sixth Edition, Addison Wesley, 2004.

31-Stuart J.Russel and Peter Norving , Artificial Intelligence a modern approach ,
Book, Prentice Hall , 2004 .

32-TK Attwood and DJ Parry smith , Introduction to bioinformatics , Book ,
Addison-Wesley ,2005.

www.manaraa.com

3 by gssl (el Jilad vie Glleall aal aal (DNA) 553l paeall 8 bl shlia slayl yiiag
YAl @l A @il e daall aadiuy 5 pmlaal) G ol Alle asay o i
e S B e i all (ar Al dpadladl 3kl paadl laa age 481) 5l il ikl da)) A jall
o el oo 4al) sl Ayl VDL 4l da j0 aaad 8 Lagl o i) 4Ll aadiey agils

CUas daskal) cliall 4y gal) cailla gl e G jail)

Al Cpe 3 () oty U Al (6 sl)l (s 5il) (aeall Judl 8 4L halie (e Canll (3 5k aal
Sl A s (6 AYI e W e Le Lagha S, Alaiad) i) 485 e sadinall Gl 5 £S0alial)

Cdaanll ej)l\w}\wdﬁﬁ@&ﬂ@ﬂ\@@ﬁﬂ\@&i pasial

G5 paaall Judle & ol 4Ll 3l sy (AFALS-N)dwe)l sa #1581 duljall oda b o
L) llae Jul Ll ¢ Aladiaal \@M\w&@m),\}g\d@mm)‘(DNA)

a5 550 Omen Sl plasily el AN LES1 S 5l e AL Gl R s S

A8 5l 8 5 Al (g L gl L il &yl 8

dowi Cialy 5 duadl Ll S Gus (PatternHunter) dse))) 53 ae da il da)l sall <y 8 ol
C9% ¢ end il

www.manaraa.com

64

Appendix A : Sample of test data

1- GAPDH Mutation

LOCUS NG_007073 3880 bp DNA linear PRI 22-MAR-2009
DEFINITION Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
on chromosome 12.

ACCESSION NG 007073 REGION: 5001..8880

VERSION NG_007073.2 GI:163954974

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

COMMENT REVIEWED REFSEQ:

This record has been curated by NCBI staff. The

reference sequence was derived from AC006064.10.

On Dec 28, 2007 this sequence version replaced gi:160358353.

ORIGIN
1 aaattgagcc cgcagectee cgettegete tetgetecte ctgttcgaca gtcagecgea

61 tettcttttg cgtcgecagg tgaagacggg cggagagaaa cccgggaggc tagggacggc
121 ctgaaggcgg caggggeggg cgeaggeegg atgtgttcge geegetgegg ggtgggeecg
181 ggcggectee geattgecagg ggegggegga ggacgtgatg cggegegggc tgggeatgga
241 ggectggtgg gggaggggag gggaggcegty tgtgteggee ggggecacta ggegeteact
301 gttctetece tecgegeage cgagecacat cgetcagaca ccatggggaa ggtgaaggtce
361 ggagtcaacg ggtgagttcg cgggtggctg gggggccetg ggctgegace geeeccgaac
421 cgegtctacg agecttgegg getecgggte tttgeagteg tatgggggca gggtagetgt
481 tcccegeaag gagagetcaa ggtcageget cggacctgge ggageeccge acccaggctg
541 tggcgcecctg tgeageteeg cecttgegge geeatctgee cggagectec tteecctagt
601 ccccagaaac aggaggtcce tactccegee cgagatcecg acccggacce ctaggtgegg
661 gacgctttct tteetttcge getetgeggg gtecacgtgte gecagaggage cecteececa
721 cggcecteegg caccgeagge cccgggatge tagtgegeag cgggtgeate cetgtecgga
781 tgctgegect geggtagage ggecgecatg ttgcaaccgg gaaggaaatg aatgggeage
841 cgttaggaaa gectgeeggt gactaaccet gegetectge ctegatgggt ggagtegegt
901 gtggcgggga agtcaggtgg agcgaggcta getggeecga tttetectee gggtgatget

www.manaraa.com

65

961 tttcctagat tattctctgg taaatcaaag aagtgggttt atggaggtcc tettgtgtee

1021 ccteeecgea gaggtgtggt ggctgtggea tggtgecaag ccgggagaag ctgagtcatg
1081 ggtagttgga aaaggacatt tccaccgcaa aatggcccct ctggtggtgg ceccttectg
1141 cagcgeegge tcacctcacg geeecgecct teeectgeca gectagegtt gacecgacce
1201 caaaggccag getgtaaatg tcaccgggag gattgggtgt ctgggegect cggggaacct
1261 gcccttetee ccatteegtce tteccggaaac cagatcteee accgeaccect ggtetgaggt
1321 taaatatagc tgctgacctt tctgtagetg ggggcctggg ctggggctct cteccateee
1381 ttctceecac acacatgceac ttacctgtgce tccecactect gatttctgga aaagagcetag
1441 gaaggacagg caacttggca aatcaaagcc ctgggactag ggggttaaaa tacagettcc
1501 cctetteecca cccgeececag tetetgtecce ttttgtagga gggacttaga gaaggggtgg
1561 gcttgeectg tccagttaat ttctgacctt tactcctgec ctttgagttt gatgatgetg

1621 agtgtacaag cgttttctce ctaaagggtg cagetgaget aggcageagce aageattect
1681 ggggtggcat agtggggtgg tgaataccat gtacaaagct tgtgcccaga ctgtgggtgg
1741 cagtgcccca catggeceget tetectggaa gggcttegta tgactggggg tgttgggcag
1801 ccctggagcec ttcagttgea gecatgectt aagccaggec agectggeag ggaagcetcaa
1861 gggagataaa attcaacctc ttgggccecte ctgggggtaa ggagatgetg cattcgecect
1921 cttaatgggg aggtggecta gggetgetea catattctgg aggagectcee cctectcatg
1981 ccttcttgcee tettgtetet tagatttggt cgtattggge geetggtecac cagggetgct

2041 tttaactctg gtaaagtgga tattgttgcc atcaatgacc ccttcattga cctcaactac

2101 atggtgagtg ctacatggtg agccccaaag ctggtgtggg aggagecacc tggetgatgg
2161 gcagcccctt cataccctca cgtattccce caggtttaca tgttccaata tgattccace
2221 catggcaaat tccatggeac cgtcaaggcet gagaacggga agettgtcat caatggaaat
2281 cccatcacca tcttccagga gtgagtggaa gacagaatgg aagaaatgtg ctttggggag
2341 gcaactagga tggtgtggct cccttgggta tatggtaacc ttgtgtcect caatatggte
2401 ctgteeecat cteeeeeeca ceecccatagg cgagateect ccaaaatcaa gtggggcegat
2461 gctggegcetg agtacgtegt ggagtccact ggegtcttca ccaccatgga gaaggetggg
2521 gtgagtgcag gagggeccge gggaggggaa getgactcag cectgcaaag gecaggacceg
2581 ggttcataac tgtctgctte tetgetgtag getcatttge aggggggage caaaagggtc
2641 atcatctctg cceectetge tgatgececce atgttegtea tgggtgtgaa ccatgagaag
2701 tatgacaaca gcctcaagat catcaggtga ggaaggeagg geeegtggag aageggecag
2761 cctggcaccce tatggacacg ctcceetgac ttgegeeceeg cteectcttt ctttgecagea
2821 atgccteetg caccaccaac tgettageac ccctggecaa ggtcatccat gacaactttg
2881 gtatcgtgga aggactcatg gtatgagage tggggaatgg gactgaggct cccacctttc
2941 tcatccaaga ctggctecte cctgecgggg ctgegtgcaa cectggggtt gggggttetg

www.manaraa.com

1

66

3001 gggactggct ttcccataat ttectttcaa ggtggggagg gaggtagagg getgatgtgg
3061 ggagtacgct gcagggcecte actccttttg cagaccacag tccatgecat cactgecace

3121 cagaagactg tggatggcce ctccgggaaa ctgtggegtg atggecgegg ggctcteccag
3181 aacatcatcc ctgcectctac tggegetgee aaggetgtgg gecaaggteat cectgagetg
3241 aacgggaagc tcactggceat ggectteegt gtcccecactg ccaacgtgte agtggtggac
3301 ctgacctgee gtctagaaaa acctgecaaa tatgatgaca tcaagaaggt ggtgaageag
3361 gcgtcggagg geeeectcaa gggeatectg ggetacactg agcaccaggt ggtcetectcet
3421 gacttcaaca gcgacaccca ctectecacc tttgacgetg gggetggceat tgecctcaac
3481 gaccactttg tcaagctcat ttcctggtat gtggetgggg ccagagactg getcttaaaa
3541 agtgcagggt ctggegecect ctggtggetg getcagaaaa agggecctga caactctttt
3601 catcttctag gtatgacaac gaatttggct acagcaacag ggtggtggac ctcatggecc
3661 acatggcctc caaggagtaa gacccctgga ccaccagece cagcaagage acaagaggaa
3721 gagagagacc ctcactgctg gggagtcect gecacactca gteccceace acactgaate
3781 tccectecte acagttgeca tgtagacecc ttgaagagge gaggggecta gggagecgea

3841 ccttgtcatg taccatcaat aaagtaccct gtgctcaacc

www.manaraa.com

67

2- FLT3 Mutation

LOCUS AC_000145 97423 bp DNA linear CON 03-MAR-2008

DEFINITION Homo sapiens chromosome 13, alternate assembly (based on HuRef),

whole genome shotgun sequence.

ACCESSION AC 000145 REGION: 9398612..9496034

VERSION AC_000145.1 GI:157704454

PROJECT GenomeProject:20837

DBLINK Project:20837

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

REFERENCE 1 (bases 1 to 97423)

COMMENT The DNA sequence is from the whole genome assembly released by the
J Craig Venter Institute as HuRef in May 2007 (see
http://www.jcvi.org/research/huref/). It is included in the NCBI

RefSeq collection as an alternative assembly to the one produced by

the Human Genome Sequencing Consortium. The original whole genome
shotgun project has the project accession ABBA0O00O0000O.1. The HuRef
assembly represents a composite haploid version of the diploid

genome sequence from a single individual. The highest scoring

allele contained is represented in the consensus sequence. DNA

Donor Name: J. Craig Venter | Date of Birth: October 14, 1946 |

Sex: Male | Ethnicity: Caucasian | Descent: European - England.

ORIGIN (only part of DNA sequence is presented here)

1 gtggggacaa gagtaacttt attgaaaata ctaatcctce atgttacttc tgactggecc
61 tgagtctggg aaggcecgeca aagtgtctag gtgatgtatt actctttatg gtagaacacc
121 tattcattat aaacttcccc caatacaacc cctgttgttg cagaaatctt aggetgtgac
181 aaccatagct gectacacat tecttgtate ttggggtaaa agcacacgtg ctetggaagg
241 aatgtgtagg tggctatggg tgcacaattt caggggtttc gtgaactcca gttaagactt
301 gccctaatta taccatgtaa ataattcaat aatgggcaat tctgtagtag aaattttatt
361 cccacccata aaatatatca ctaaatagct gaaaaattta catattattt taaaacatag
421 acttaaaaaa tcatattagc ttctccttag caaaatgctt ttgttttatg tatttacaag
481 aatatactgt acttcaggta cacaattcac tcaagccage ctgagaaggce cttggatgca

www.manaraa.com

68

541 gatcaatgct ccaataaagt tcattatcag ctcctectge cttgtgacag gatgatttga

601 ttttacaaaa gtccctttga aaacaagagt aaacgcagac agcttctaga gaaaagtctg
661 gtgaagcagc agttgataat agattttctt ttagtgatga aattaatctt gttttggtaa

721 tctacagcct gttagggata ggtggaggea tgaagtccett aaaactaaat tgttectcta

781 cgaatcttcg acctgagect gcggagagag tagecccaaa tecatctete tgetgaaagg
841 tcgcectgttt tggtaggtgt gaggacattc cgaaacacgg ccatccacat tctgatacat

901 ctgaatgtgg gaaagagaca gaacactgat taccatctga tgtagatgca catgttatgc
961 gcccatatta caaattattt aaataaaaac agttgttcta tatagacaat tacttttttg

1021 tttgtttgtt gtetgtttgt ttattttttg agacagagtce tcgetetgtt geccagactg

1081 gagtgcagtg gtacaaccat agttcaccgt ggccttgatg ttctgggttt gagcaatcct
1141 cccaccttaa cctectgagt agetgggace acaagcaggce tccaccacac cctgetaatt
1201 ttettatttt ttgtaaagac aaagtctcac tatgttgtce agggtggtct caaactectg

1261 ggctcaagtg atcccacacc acccecggect cccaaagtge tgegattaca ggtgtgagec
1321 actacgccecg gectagacat cacttttaaa atgtttaaac tgatatataa tagatgtaca
1381 tattttcagg aaacgtgtag acaagtactt ttattatgca taggtctcag aggatattct

1441 atataactaa aaaagcaatt ttggtccttt tattaatgga gaaatcaaat catagtcaaa

1501 tattttattt cattattgag tctactctca gatataaaat gtcactctag aaatcctaaa

1561 accatgcaga aaaatcataa aagagaaagg ccacaaaagg aaatctgttc attatggagt
1621 taatacaagg gactgattct tgagttttcc cttggagttt cacgactttt aaatattttt

1681 ttctgaaatg aagagattta ctttcctttc ccaaatatga agttaacatg cattcatata

1741 gataatttga gaaatacaga aagagacgta gaaggccggg cgeagtggct catgectgta
1801 atcccagcac tttgggatge cgaggeggge ggatcacctg gggttgggag ttcaggacca
1861 gcctagecaa cgtggagaaa cectgtetct actaaaaata caaaactage cgggeatggc
1921 ggcgegegec tgeagteeca getacttggg aggetaagge aggagaattg cttgaacctg
1981 ggaggtggag gctgcagtga gectagattg tgecactgea ctccagectg ggtgacagag
2041 caagactcca tctcaaaaaa aagaaaaaag gctacaagtc atgacaagta cccgecatta
2101 tagacagctt gctatgcaca cacaattttg tgtctgtggg ctcaggcetat atattctatt

2161 ttggaacctt attttgaatt atcaatatat tgttattata ctgctcatat gttgeetgtg

2221 tcacatattt acattattca ctaaggatgg ccacatattt ttttttcacg gcagcctaga

2281 gttccatagt actgatgcat cataattaac cttttgacca actggttata cgaaacaaac
2341 tgaaaagtgc acactcaatc tagtctgacg ttgggataag cagaagtgga attgctggat
2401 caaaaaggat gcacacttga actgtgatac acaaggccag getgeectge agaaaggttg
2461 tatttatttc tactcctatc aacggtgect ggaaactata ttttccagag ccttctgaac

2521 aatgggtatg tcagcctcee acatctctte tettttgetg agcaagaagt tctatctect

www.manaraa.com

69

2581 taactatata tgtttcacta tctgcaaagt tgggcctttt tcctatactt tatgtccatt

2641 tgttttcatt ttgaatagee tgectattte ctttgecttt tatgtatata aaaggctata

2701 caggctgggt gtactggcetc aactctgtaa tcctageact ttgggaggece ggggegggag
2761 gattgcttga ggccaagagt tcaagaccaa actaaccaac atagcaagat cctgtctcta
2821 aaagaaataa gtttttaaaa ggtgatacat ttttattatt atttgtttat aagaacttta

2881 tgatttagga atcatgcatt ctatttaaat tttatagatt tgttccgttc ccacagecect

2941 tgttactgtc tacttctttt tetttgtttt tgacagtttt aatgtgaact gtccagactg

3001 cctectacac ttcactttte tttctagaaa attgtgtgtg tgtgtgtgtg tgtgtgtgtg
3061 tgtgtgtatc ctttgaccca aaatatatce attgtgaacc aggtgttgea caatgacage
3121 tttgcttgta ccctgaagga tgaacagtaa ctactcatge gtgecttttg tgaagtagac
3181 atagcagtta gttagcattt gttgaacctg ttgaatccaa atgtacatct ctaccactga
3241 atttctaacc acctcatgaa gtttgtgtag cacaaatacc aataacactt ccaatcttcc
3301 acctgaatta actaacatgt gctcttcatc cagtctcact gtctagaagt ttctagaacc
3361 atctctgaca atctctctee actcccatag ctagttactg ggtatagttg taatacatca
3421 ctettttcca tttctttaag tgacctttct ttectttttt teettetett tegttgttgc

3481 tgttgctgtt gtgacagagt ctcactetgt tgcccagget ggagtgttgt ggcatgatct
3541 cagctcacag caacctctgce ctctcaggtt caagcaatte ttgtgectca agtagetggg
3601 actacaggtg tgtaccacca cacctggcta atttttatat ttttttagta gagacagggt
3661 ttcaccatgt tgaccaggct ggtcttgeac tectggectc aagtgatceca cccacctagg
3721 cctcccaaag tgetgegatt acaggegtga gecaccaccce tcageeactg ttgtttttaa
3781 caggctcaca gataacatca taaaagtgac ctttaaatga ctttttaaat acattctcct
3841 tatgaaattg tgaaacaaac cctaggtttt caaatgtatc attataaaga agtacataaa
3901 ttttcttata ctttaaaaaa tggttctttt ttccttagtt atcgtttect tttcatctga

3961 atgttattta tttgtgcttt tttctttttc aagacagggt ctcgetctgt cactcaggcet

4021 ggagtacagt ggtgcaatca cagctcactg cagectcaac ctcctaggea gaagtgatte
4081 tcttgtctca gectectgag taactgggac tactggtgtg cgecactaca cetggttaat
4141 tetttaattt ttggtagaga tggggtceca ttatgttgee cagtetggte tcaaacctet
4201 gagcccaagt gatcctctca cettggecte tcaatgtget gggattacag gegtgageca
4261 ccacacccga cttetttttt tcttaattgt tcacttcaaa gatagtaget ttagtagtat

4261 ccacacccga cttetttttt tcttaattgt tcacttcaaa gatagtaget ttagtagtat

4321 atttgtatac tttgttgata tacaatatta atatacagta tagactacac tcagactgct
4381 gtattcaaat cctaagtctg acatttacca tgttacctta ggcaaattac ttaacctctc
4441 tgtgectcaa tttactagtc tgctaaaggg ataataatag aacctacttc aggagattga
4501 ggtgaggatt aagagttatt aattttgtgg ctaatacatt agtaaactct atgattaaat

www.manaraa.com

70

Appendix B:Sample Java Code

//btnAlign

//
btnAlign.setText("Align¢("

btnAlign.setPreferredSize(new Dimension(100, 29¢((
btnAlign.addActionListener(new ActionListener} ()
public void actionPerformed(ActionEvent e(

}
alignmethod:()

//btnResult
//
btnResult.setText("Show Results¢("
btnResult.setPreferredSize(new Dimension(100, 29¢((
btnResult.addActionListener(new ActionListener} ()
public void actionPerformed(ActionEvent e(

}
//btnResult_actionPerformed(ef(

(1

// btnExit
/!
btnExit.setText("Exit¢("
btnExit.setPreferredSize(new Dimension(100, 29¢((

www.manaraa.com

71

btnExit.add ActionListener)

new ActionListener() / anonymous inner class

}
// terminate application when user clicks exitltem
public void actionPerformed(ActionEvent event(
}
System.exit(0); // exit application
114 end method actionPerformed
114 end anonymous inner class

// ¢ end call to addActionListener

//btnCancel

//

btnCancel.setText("Cancel("
btnCancel.setPreferredSize(new Dimension(100, 29¢((
btnCancel.addActionListener(new ActionListener} ()

public void actionPerformed(ActionEvent e(

}
//btnCancel_actionPerformed(e¢(
{
‘({
//
//btnClear
//

btnClear.setText("Clear¢("

btnClear.setPreferredSize(new Dimension(100, 29¢((

btnClear.add ActionListener)

new ActionListener() / anonymous inner class

www.manaraa.com

72

// display message dialog when user selects About...

public void actionPerformed(ActionEvent event(

}
seql.setTexte(" ")
seq2.setText¢(" ")
/1§ end method actionPerformed
/114 end anonymous inner class

// ¢(end call to addActionListener

//pnlOCA
/!
pnlOCA.setLayout(new FlowLayout(FlowLayout.RIGHT, 5, 5¢((

pnlOCA.add(btnClear, 0¢(
pnlOCA.add(btnCancel, 1¢(
pnlOCA.add(btnExit, 2¢(
pnlOCA.add(btnResult, 0¢(
pnlOCA.add(btnAlign,0¢(

/Nayout = new FlowLayout(FlowLayout.Right(
JMenu fileMenu = new JMenu("File"); // create file menu

fileMenu.setMnemonic('F'); // set mnemonic to F

// create new... menu item
JMenultem newltem = new JMenultem("New*("
newltem.setMnemonic('n'); / set mnemonic to A
fileMenu.add(newltem); // add about item to file menu

newltem.add ActionListener)
new ActionListener() / anonymous inner class
// display message dialog when user selects About...

public void actionPerformed(ActionEvent event(

www.manaraa.com

73

b
/1§ end method actionPerformed
4 end anonymous inner class

www.manaraa.com

