
www.manaraa.com

Al al-Bayt University

Prince Hussein bin Abdullah College of Information Technology

Computer Science Department

An Algorithm for Finding Approximate Local Similarities in DNA

Sequences

By

Najah Methqal Ali ALshanableh

2009

www.manaraa.com

An Algorithm for Finding Approximate Local Similarities in DNA

Sequences

By

Najah Methqal Ali ALshanableh

Supervisor: Dr. Mamoun Al-Rababaa

A Thesis Submitted to the

Scientific Research and Graduate Faculty in partial fulfillment of the

Requirements for the degree of Master of Science

in Computer Science

Approved Members of the Committee

Dr. Mamoun Al-Rababaa ……………….

Dr. Jehad Q. Alnihoud ……………….

Dr. Venus Samawi ……………….

Dr. Maryam Nuser ……………….

Al al-Bayt University

Mafraq, Jordan

2009

www.manaraa.com

 B

Dedication

This thesis is dedicated to everyone who gave me love, friendship and support during

my research.

www.manaraa.com

 C

Acknowledgements

I would like to thank my supervisor Dr. Mamoun Al-Rababaa and Dr. Jehad Alkhaldy.

They both gave me guidelines for doing a scientific research, and ensured the quality of

my work. Also I would like to thank Dr. Wafa Elbjeirami, Director of Molecular

Diagnostics and Immunogenetics in King Hussein Cancer Centre and all the stuff who

helped me in my research, thanks a lot.

I also want to thank all my friends who supported me over the period of my research. At

last, I would like to thank my father, my mother, and all other members in my family

for their generous and kind supports.

www.manaraa.com

 D

List of contents

Page Subject

A Front Page

B Dedication

C Acknowledgment

D List of contents

F List of tables

G List of figures

I List of appendices

J List of abbreviations

K Abstract

1 Chapter one : Introduction

2 1.1Scope of the Study

2 1.2. Aims and Objectives

2 1.3. Significance of the Study

2 1.4. Contributions

3 1.5 Thesis Outline

4 Chapter two: Bioinformatics

5 2.1 Bioinformatics

6 2.2 Deoxyribonucleic Acid (DNA)

7 2.3 Sequence Alignment

10 2.4 Approximate Local Similarities in DNA

11 2.4.1History of the Problem

11 2.4.2 Formal Definition

12 2.4.3 Approximate String Matching

16 Chapter Three: Literature Review

16 3.1 Needleman-Wunsch algorithm

17 3.2 Smith-Waterman algorithm

20 3.3 FASTA algorithm

21 3.4 BLAST algorithm

21 3.5 PatternHunter

www.manaraa.com

 E

25 Chapter Four : Methodology

25 4.1 Heuristics

26 4.2 Scoring Matrices

27 4.3 Word length (Seed)

28 4.4 String matching techniques

34 Chapter Five: The proposed Algorithm

34 5.1 Algorithm Description

41 Chapter Six: AFALS-N Software

41 6.1 Software Development Model

45 6.2 Implementation

48 6.3 User Interface Screens

53 Chapter Seven : Results and Discussion

53 7.1 Test environment

54 7.2 Sensitivity analysis

56 7.3 Execution Time Evaluation

57 7.3 Comparison with PatternHunter

59 Chapter Eight:Conclusion and Future Work

59 8.1 Conclusion

59 8.2 Future work

60 References

 ا����� 63

64 Appendix A: Sample of Test Data

70 Appendix B: Implementation and Screens

www.manaraa.com

 F

List of tables

Page Table

22 Table 3.1: PatternHunter compared to Blastn

53 Table 7.1 :Organisms compared

56 Table 7.2 : Execution times for sequences of size ranging from 1 kBP to 3MBP

57 Table 7.3 : PatternHunter vs AFALS-N

58 Table 7.4 : PatternHunter vs AFALS-N(word size 11)

www.manaraa.com

 G

List of figures

Page Figure

5 Figure 2.1: Bioinformatics

6 Figure 2.2: DNA Components

7 Figure 2.3: DNA double helix

7 Figure 2.4: DNA sequencing

8 Figure 2.5: DNA sequencing

9 Figure 2.6: Bioinformatics

22 Figure 3.1 : PatternHunter compared to Megablast

23 Figure 3.2: PH alignment rank and score.

24 Figure 3.3: PH sensitivity

27 Figure 4.1: Alignment score

30 Figure 4.2: Borders r, s of a string x

30 Figure 4.3: Extension of a border

30 Figure 4.4: Prefix of length i of the pattern with border of width b[i]

32 Figure 4.5: Border of length m of a prefix x of pt

33 Figure 4.6: Shift of the pattern when a mismatch at position j occurs

35 Figure 5.1 : AFALS Algorithm

36 Figure 5.2: AFALS Algorithm Flow chart

37 Figure 5.3 : Data partition example

37 Figure5.4 : KMP output example

42 Figure 6.1: Classical Waterfall Model

43 Figure 6.2: Modified Waterfall Model

45 Figure 6.3: BlueJ Screen

46 Figure 6.4 : Classes in AFALS-N

47 Figure 6.5 : MainWindow Class

47 Figure 6.6 : Test Class

48 Figure 6.7 : AFALS-N screen

49 Figure 6.8 : File menu

www.manaraa.com

 H

49 Figure 6.9 : Edit menu

49 Figure 6.10 : View menu

49 Figure 6.11 : Help menu

50 Figure 6.12 : Alignment tap

51 Figure 6.13 : Result tap

52 Figure 6.14 : About tap

52 Figure 6.15 : Terminal Window

54 Figure 7.1 : Affected person mutation

55 Figure 7.2: Leukemia Mutations

55 Figure 7.3: Breast Cancer Mutation

57 Figure 7.4 : Execution times for sequences of size ranging from 1 kBP to

3MBP

www.manaraa.com

 I

List of appendices

 Page Appendix

64 Appendix A: Sample of Test Data

70 Appendix B: Sample of Java Code

www.manaraa.com

 J

List of abbreviations

Meaning Abbreviation

An Algorithm for Finding Approximate Local Similarities in DNA Sequences

-Najah

AFALS-N

National Center for Biotechnology Information NCBI

Deoxyribonucleic Acid DNA

Ribonucleic Acid RNA

PatternHunter PH

Knuth, Morris and Pratt algorithm KMP

Fms-related tyrosine kinase 3 FLT3

Acute myeloid leukemia AML

Insertion or deletion mutation indel

Uniform Resource Locator URL

Basic Local Alignment Search Tool BLAST

www.manaraa.com

 K

Abstract:

Finding approximate local similarities in long DNA sequences is very important in

bioinformatics .These local regions of approximated similarity may be a consequence of

functional, structural, or evolutionary relationships between the sequences.

DNA sequences, which hold the codon of life for every living organism, can be

abstractly viewed as very long strings over a four–letter alphabet of A, C, G, and T.

Proteins which use an alphabet of 20 symbols, are translations from selected stretches of

DNA, using a predefined translations table where each 3 letters of DNA translated to

one amino-acid.

Many projects to sequence the genome of some species are well advanced or calculated.

The very large number of species (and their genetic variations) that is of interest to man,

suggest that many new sequences will be revealed as the improved sequencing

techniques and analysis are deployed.

Consequently, we are at a technical threshold. Techniques that were capable of

exploiting the smaller collections of genetic data, for example via serial search, may

require radical revision.

Several techniques have been developed to address this problem. However this study

focuses not only on developing an algorithm , we also suggest advanced way to find

acceptable results with increased sensitivity and decreased computation time using

heuristics.

The proposed algorithm (AFALS-N) has been presented as an approximate local

similarities finder and as a pair wise alignment algorithm. It has been implemented

using java and tested with real DNA sequences.

The experimental results have shown that AFALS-N performed better then

PatternHunter. When Compared with PatternHunter the enhancement over execution

time was 0.9%. Also AFALS-N has achieved 66% sensitivity.

Keywords: Bioinformatics, DNA Alignment, Approximate Similarities, Heuristics, seed.

www.manaraa.com

 1

Chapter One

Introduction

In bioinformatics, a sequence alignment is a way of arranging the primary sequences of

DNA (Deoxyribonucleic Acid), RNA (Ribonucleic Acid), or protein to identify regions

of similarity that may be a consequence of functional, structural, or evolutionary

relationships between the sequences [4].

There are many types of alignments, Local or global alignment, and multiple or pair-

wise alignments. The most important of these alignments is the combination of local

and pair-wise alignment which is a powerful tool in DNA analysis because it can

uncover the homology relationship between two sequences. And also because the nature

of small conserved regions in DNA that is conserved from mutations [32].

Finding a specific pattern in DNA is considered as a primary stage before many DNA

processing procedures. Furthermore, approximate string matching has many

applications in bioinformatics besides finding specific genes in DNA like finding

similar parts of protein , RNA [26].

Approximate string matching has many applications including data retrieval, Uniform

Resource Locator (URL) processing, language dictionaries. Therefore, the efficiency of

approximate string matching has a great impact on the performance of these

applications [9].

Approximate string matching is the technique of finding approximate matches to a

pattern in a string. The closeness of a match is measured in terms of the number of

primitive operations necessary to convert the string into an exact match. The usual

primitive operations are insertion, deletion and substitution [9].

Many algorithms have been developed to gain the optimal local alignment. Previous

algorithms use dynamic programming which always guarantee the optimal solution but

with an increase in computational time. Current algorithms use heuristics which is faster

than dynamic programming but sacrifices some of accuracy.

www.manaraa.com

 2

The running time of dynamic programming algorithms must be cut down in order to

achieve practical run time , and the accuracy of algorithm that use heuristics must be

increased to reach optimal . This is what we offer as thesis subject , an algorithm that

finds the approximate local pair-wise alignment of DNA sequence within a reasonable

computational time that is less than dynamic programming algorithms time , and more

accurate than heuristic algorithms .We have developed this algorithm using heuristics.

1.1Scope of the Study

This study focuses on the pairwise local alignments in DNA sequences and developing

an algorithm that falls in this scope.

1.2. Aims and Objectives

Our aim in this research is to develop an algorithm that balance between the accuracy of

dynamic programming algorithms such as smith-waterman algorithm and the speed of

heuristic algorithms such as BLAST (Basic Local Alignment Search Tool).

In the proposed algorithm we tried to increase the sensitivity of finding the approximate

local similarities between two pairs of DNA sequences without increasing in time at

minimum.

1.3. Significance of the Study

This thesis serves the biologists, physicians, lab technicians and researchers who are

Interested in DNA processing.

1.4. Contributions

The research contributions may be recorded as follows:

• Proposing new algorithm which decreases the time and space needed as

compared to some of the currently used algorithms for solving the problem of

local pair wise approximate string matching.

www.manaraa.com

 3

• Developing a tool for finding local similarities in DNA sequences.

1.5 Thesis Outline

The remaining of this thesis is organized as follows:

Chapter 2: Presents an overview of bioinformatics and approximate local similarities in

DNA.

Chapter 3: Describes previous related work.

Chapter4: Describes the methodologies that have been used.

Chapter5: Describes the proposed algorithm.

Chapter6: Describes the AFALS-N software.

Chapter7: Discusses the results of Algorithm experiments.

Chapter 8: Presents conclusions and future work.

www.manaraa.com

 4

Chapter Two

Bioinformatics

In bioinformatics, a sequence alignment is a way of arranging the primary sequences of

DNA, RNA, or protein to identify regions of similarity that may be a consequence of

functional, structural, or evolutionary relationships between the sequences. So

alignment is equivalent to finding approximate similarities. Aligned sequences of

nucleotide or amino acid residues are typically represented as rows within a matrix.

Gaps are inserted between the residues so that residues with identical or similar

characters are aligned in successive columns [2].

There are some times unknown constraints on the sequences that cause the correct

alignment to differ from the optimal alignment given by an algorithm. Hence, it is of

some interest to produce all alignments with score within a specified distance of the

optimum score, which is called near optimal alignment [26].

Current ‘mainstream’ alignment algorithms have optimization criteria based primarily

on computational efficiency using parameters such as gap penalties, which are not

biologically motivated. In addition, current alignment algorithms such as the Smith and

Waterman technique provide a single alignment that could be sensitive to rather

arbitrary choices in parameters such as gap penalties [2].

The heuristic algorithms such as BLAST is fast but have a weakness which is that there

is a possibility of missing an alignment or giving inaccurate output [26].

The challenge in performing sequence alignments has been the tradeoff between

accuracy and efficiency .Traditional algorithms which use dynamic programming tend

to have a very high computational complexities, however manage to find the optimal

alignment. Other algorithms which use heuristics sacrifice some of this accuracy to

make the alignments faster; they find reasonably good alignments or find the optimal

alignment reasonably often [26].

Before introducing sequence alignment, there are some concepts must be discussed.

Starting with Bioinformatics, which is the broad discipline of sequence alignment, then

www.manaraa.com

 5

DNA (Deoxyribonucleic Acid), on which we do alignment and find approximate local

similarities in DNA.

2.1 Bioinformatics

Bioinformatics is a discipline which originally arose for the utilitarian purpose of

introducing order into the massive data sets produced by the new technologies of

molecular biology [4].

Figure 2.1: Bioinformatics [12].

Bioinformatics, or computational biology, refers to an emerging, interdisciplinary field

in which computer technology, including software, hardware and algorithms are applied

to solve problems arising in biology. One subject, of particular interest in the field, is to

develop tools for processing bimolecular data. These data include DNA

(deoxyribonucleic acid), RNA (ribonucleic acid), protein sequences, and their two-

dimensional (2D) and three-dimensional (3D) structures [10].

Mathematics

Statistics

Computer

 Science

Informatics

Biology
Molecular

 biology

Medicine

Chemistry

Physics

Bioinformatics

www.manaraa.com

 6

Bioinformatics has been developed in the space, which was already occupied by a

number of related disciplines. These include quantitative sciences such as [12]:

• Mathematical and computational biology,

• Biometry and biostatistics,

• Computer science,

• Cybernetics,

As well as biological sciences such as

• Molecular evolution,

• Genomics and proteomics,

• Genetics,

• Molecular and cell biology.

2.2 Deoxyribonucleic Acid (DNA)

Deoxyribonucleic Acid, DNA, is the molecule of life. DNA is a double helix

comprising two DNA strands running anti parallel to each other and is made of many

units of nucleotides, which each consist of sugar, a phosphate and a base [28].

Figure 2.2:DNA Components [28].

Each strand of the DNA double helix is a polymer built from four components, called

nucleotides: A, T, C, and G(the abbreviations for adenine, thymine, cytosine, and

guanine). The two strands of DNA are complementary: whenever there is a T on one

strand, there is an A in the corresponding position on the other strand; whenever there is

www.manaraa.com

 7

a G on one strand, there is a C in the corresponding position on the other. DNA can be

represented by a sequence of these four letters, or bases [28].

Figure 2.3:DNA double helix [28].

Figure2.4:DNA sequencing[28].

2.3 Sequence Alignment

Alignment is one of the basic data mining and analysis methods in bioinformatics. Data

mining and analysis aims at nontrivial extraction by computational means, of previously

unknown and potentially useful information from data, or search for relationships and

patterns that exist in databases [13].

…ACGTGACTGAGGACCGTG

CGACTGAGACTGACTGGGT

CTAGCTAGACTACGTTTTA

TATATATATACGTCGTCGT

ACTGATGACTAGATTACAG

ACTGATTTAGATACCTGAC

TGATTTTAAAAAAATATT…

www.manaraa.com

 8

Sequence alignment is defined as the process of lining up two or more sequences to

achieve maximal levels of similarity and the possibility of homology (sequences that

share a common ancestor) [12].

Figure2.5:DNA sequencing[12].

The sequence alignment indicates the changes that could have occurred between two

homologous sequences and a common ancestral sequence during evolution [27].

Alignments are commonly represented both graphically and in text format [16]. In

almost all sequence alignment representations, sequences are written in rows arranged

so that aligned residues appear in successive columns. In text formats, aligned columns

containing identical or similar characters are indicated with a system of conservation

symbols [22] .

There are many ways to consider the sequence alignment :

1- Pair-wise vs Multiple sequence alignment.

Pair wise sequence alignment methods are used to find the best-matching piecewise

(local) or global alignments of two query sequences. Pair wise alignments can only be

used between two sequences at a time, but they are efficient to calculate and are often

used for methods that do not require extreme precision (such as searching a database for

sequences with high homology to a query). The three primary methods of producing

pair-wise alignments are dot-matrix methods, dynamic programming, and word

methods (Heuristic methods)[2].

Multiple sequence alignment is an extension of pair-wise alignment to incorporate more

than two sequences at a time. Multiple alignment methods try to align all of the

sequences in a given query set. Multiple alignments are often used in identifying

conserved sequence regions across a group of sequences hypothesized to be

evolutionarily related. Such conserved sequence motifs can be used in conjunction with

VLSPADKTNVKAAWAKVGAHAAGHG

||| | | |||| | ||||

VLSEAEWQLVLHVWAKVEADVAGHG

www.manaraa.com

 9

structural and mechanistic information to locate the catalytic active sites of enzymes.

Alignments are also used to aid in establishing evolutionary relationships by

constructing phylogenetic trees [2].

2- Local vs global Alignment.

Global alignments, which attempt to align every residue in every sequence, are most

useful when the sequences in the query set are similar and of roughly equal size[9]. A

general global alignment technique is called the Needleman-Wunsch algorithm and is

based on dynamic programming. Local alignments are more useful for dissimilar

sequences that are suspected to contain regions of similarity or similar sequence motifs

within their larger sequence context. The Smith-Waterman algorithm is a general local

alignment method also based on dynamic programming. With sufficiently similar

sequences, there is no difference between local and global alignments [16].

Local alignment identify regions of similarity within long sequences that are often

widely divergent overall . The rationale for local similarity searching is that functional

sites are localized to relatively short regions , which are conserved irrespective of

deletions or mutations in intervening parts of the sequence . Thus , a search for local

similarity may produce more biologically meaningful and sensitive results than a search

attempting to optimize alignment over the entire sequence lengths (global alignment)

[4] .

Figure 2.6:Bioinformatics [16].

Local alignment are often preferable but can be more difficult to calculate because of

the additional challenge of identifying the regions of similarity [27].

In [16] stated that local alignment are more suitable and meaningful for :

www.manaraa.com

 10

1- Aligning sequences that are similar along some of their lengths but dissimilar in

others.

 2- Sequences that share conserved regions or domains.

3- Sequences that differ in length.

Hybrid methods, known as semiglobal or "glocal" methods, attempt to find the best

possible alignment that includes the start and end of one or the other sequence. This can

be especially useful when the downstream part of one sequence overlaps with the

upstream part of the other sequence. In this case, neither global nor local alignment is

entirely appropriate: a global alignment would attempt to force the alignment to extend

beyond the region of overlap, while a local alignment might not fully cover the region

of overlap [32].

2.4 Approximate Local Similarities in DNA

Pattern matching occurs in various applications, ranging from simple text searching in

word processors to identification of common motifs in DNA sequences in

computational biology. The problem of exact pattern matching has been well studied

and a number of efficient algorithms exist. However these exact pattern matching

algorithms are of little help when they are applied to finding patterns in DNA

sequences. The DNA sequence search is inheritably inexact in nature because there are

acceptable equivalences of amino acids that made up of the sequence. Current inexact

pattern matching algorithms are based on four approaches: (1) Dynamic Programming;

(2) Automata; (3) Bit-Parallelism;(4) Filtering [26].

The problem of string matching is very simply stated. Given a body of text T[1…n] we

try to find a pattern P[1…m] where m ≤n. This can be used to search bodies of text for

specific patterns, or in biology, can be used to search strands of DNA for specific

sequences of genes. Approximate string matching is a much more complicated problem

to solve and has many more real world applications. Unfortunately, in real world

applications the problem is not so cut and dry. This is where approximate string

matching comes in. Instead of searching for the string exactly, approximate string

matching searches for patterns that are close to P. In other words approximate string

www.manaraa.com

 11

matching allows for a certain amount of error between the two strings being compared.

In this research we will define this more formally later [9].

One of the earliest applications of approximate string matching was in text searching.

The approximate string matching algorithms can be applied to account for errors in

typing. Internet searching is particularly difficult because there is so much information

and much of it has errors in it. Also, since the internet spans many different languages,

errors frequently arise in comparing words across language barriers. Also, text editors

have to use approximate string matching when performing spell checks. Additionally,

spell checkers have to generate a list of “suggested words” that are close in spelling to

the misspelled word [9].

Another application of approximate string matching is in biology. As with text, ideally,

exact string matching should be effective. But in reality, DNA searching is not an exact

science. There are frequently mutations in DNA that a string matching algorithm must

account for. In fact, oftentimes these mutations are sought out because they may

indicate disease or other genetic problems [26].

2.4.1History of the Problem

The problem of approximate string matching is obviously an offspring of the much

simpler exact string matching problem. The simple brute force algorithm for exact

string matching runs in O(nm) time where n is the length of the first sequence and m is

the length of the second sequence. The first major advance in exact string matching

algorithms came in 1965 when Levenshtien [4] developed a dynamic algorithm to

compute distance in (n*m) time. That is still the premier algorithm used today. In 1970

Cooke [5] mathematically discovered that there was a possible algorithm to solve the

problem in O(n+m) time. It was Knuth, Morris, and Pratt [6] that used Cooke’s theorem

to produce an actual algorithm in 1976 [9].

2.4.2 Formal Definition

Consider two strings of text T[1..n] and P[1..m], and a distance function d(x[i..j],

y[a..b]) where x[i..j] and y[a..b] denote substrings of x and y. d(x[i..j],y[a..b]) computes

www.manaraa.com

 12

the minimal cost of converting x[i..j] into y[a..b]. There are three operations we can

perform to convert x into y, each with a cost [9].

Substitution: To perform a substitution we simply take one character in x and change it

to match a character in y.

Insertion: An insertion is when a character is simply inserted into x to match the

character in y at the same position.

Deletion: This is the opposite of insertion. As the name suggests, it is the act of

removing a character in x [9].

Obviously, conversions can very easily be made through a series of m insertions at the

front of x, followed by n deletions. However, this is usually not optimal, except in the

worst case. Intuitively it’s easy to see when each of these operations would be used in

the optimal way. However, it’s much more difficult to define the optimal conversion in

a specific form .The final input to the approximate string matching problem is k, the

maximum allowable error. Then the problem is to calculate the set of P[i…j] such that

d(T[x…y],P[i…j]) ≤k .

2.4.3 Approximate String Matching

The need to align inexact sequence data arises in various fields and applications such as

computational biology, signal processing and text processing. In particular, in DNA

sequence analysis, exact sequence matching is rare. Due to possible DNA mutation, the

biological inference does not expect an identical match, but rather a high sequence

similarity usually implies significant functional or structural similarity [9].

Inexact pattern matching is sometimes referred as “approximate pattern matching” or

“matching with k mismatches/differences”. This problem, in the general form, can be

stated as: Given a pattern P of length m and a string (or text) T of length n (m ≤ n), find

all the occurrences of substrings X in T that are “similar” to P, allowing a limited

number, say k, of “errors” in the “similarity” matches. The “errors” are the total cost of

transforming the pattern P so that P and X are equal. The common allowable

edit/transformation operations are insertion, deletion and substitution. The common

error model is called “edit distance”. The edit distance is the minimal number of edit

operations required to transform the first sequence into the second [9].

Inexact pattern matching algorithms can be classified into four main categories:

www.manaraa.com

 13

1. Dynamic Programming Approach

This is the oldest among the four approaches and the most commonly used approach,

especially in the area of biological sequence analysis. Examples are the Needleman–

Wunsch algorithm and Smith-Waterman algorithm. These algorithms are much more

complex than the ones for exact pattern matching. It involved solving successive

recurrence relations recursively. I.e. smaller problems are solved in succession to solve

the main problem. The classical dynamic programming algorithm can also be thought of

as a column-wise “parallelization” of the automaton [26].

The major advantage of dynamic programming approach is its flexibility in adapting to

different edit distance functions. In general, the worst case complexity is O(mn). Over

the past two decades, a number of improved solutions have been proposed to lower the

worst case complexity to O(kn) and average complexity of O(kn/√|Σ|) [9].

2. Automata Approach

This approach is also rather old. Though automata approach doesn’t offer time

advantage over Boyre-Moore algorithm for exact pattern matching, this approach does

offer better running time for inexact pattern matching. Both the average and worst case

performance remain O(m+n) [9].

3. Bit-Parallelism

This approach is rather new (after 1990) and is based on exploiting the intrinsic

parallelism of the bit operations inside a computer word. The basic idea is to

“parallelize” another algorithm, using bits. In general, the number of operations that an

algorithm performs can be cut down by a factor of at most w, where w is the number of

bits in a computer word. Since in current computer architectures, w is 32 or 64, the

speedup is very significant in practice. The results are especially significant when short

patterns are involved. They may work effectively for any error level [3].

The first bit-parallel algorithm is known as “Shift-Or” which searches a pattern in a text

(without errors) by parallelizing the operation of a nondeterministic finite automaton

that looks for the pattern. This automaton has m+1 states, and can be simulated in its

www.manaraa.com

 14

nondeterministic form in O(mn) time. For patterns longer than the computer word (i.e.

m>w), the algorithm uses (m/w) computer words for the simulation. The algorithm is

O(n) on average. Bit-parallelism has become a general way to simulate simple

nondeterministic automata instead of converting them to deterministic form. It has the

advantage of being much simpler, in many cases faster, and easier to extend in handling

complex patterns than its classical counterparts. Its main disadvantage is the limitation it

is imposed by the size of the computer word. In many cases its adaptations for longer

pattern search are not very efficient [9].

There are two main trends in bit-parallelism approach: (1) parallelize the work of the

dynamic programming matrix; or (2) parallelize the work of the nondeterministic

automaton [3].

4. Filtering Algorithms

This approach started in 1990 and has been most very active since. Most of the new

algorithms proposed in recent years belong to this class [3]. Filtering is based on the

fact that it may be much easier to tell that a text position does not match than to tell that

it matches. It is formed by algorithms that filter the text, quickly discarding text areas

that do not match. Since the exact searching algorithms is much faster than

approximate searching ones, most filtering algorithms take advantage of this fact by

searching pieces of the pattern without errors [9].

Filtering algorithm, by itself, is normally unable to discover the matching text positions.

Rather, it is used to discard large areas of the text that cannot contain a match. Filtering

algorithms must couple with a process that verifies all those potential text matching

positions. Any non-filtering algorithm can be used for this verification. The selection is

normally independent, but the verification algorithm must behave well on short texts

because it can be started at many different text positions to work on small text areas [9].

The major interest in this approach is the potential for algorithms that do not inspect all

text characters. These filtering algorithms have a theoretical average running time

O(n(k+ log m)/m), which was proven optimal. In practice, filtering algorithms are

among the fastest too [3].

The main drawback of this approach is that the performance of filtering algorithms is

very sensitive to the error level. Most filters work very well on low error levels and very

badly otherwise. This is related to the amount of text that the filter is able to discard

www.manaraa.com

 15

.When evaluating filtering algorithms, it is important not only to consider their time

efficiency but also their tolerance for errors [3].

www.manaraa.com

 16

Chapter Three

Literature Review

 Here, we shall look at the main algorithms: the dynamic programming algorithms by

Needleman-Wunsch and Smith-Waterman, and the heuristic approximate alignment

algorithms FASTA, BLAST and PatternHunter. We shall look at the algorithm itself

and the computational and space complexity of each algorithm. From this, we can

compare the efficiencies of the various algorithms and see what sacrifices the

algorithms make in exchange for speed.

3.1 Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm [25], published in 1970, provides a method of

finding the optimal global alignment of two sequences by maximizing the number of

amino acid matches and minimizing the number of gaps necessary to align the two

sequences. Because the Needleman-Wunsch algorithm finds the optimal alignment of

the entire sequence of both sequences, it is a global alignment technique, and cannot be

used to find local regions of high similarity [26].

In pairwise sequence alignment algorithms, a scoring function, F, must exist such that

different scores can be assigned to different alignments of two proteins relative to the

number of gaps and number of matches in the alignment. Thus, the alignment with the

largest score must be the optimal alignment. In this scoring function, let m be the score

for two residues matching, s is the penalty for mismatches, and g is the penalty for

inserting a gap. The Needleman-Wunsch algorithm realizes that the score of aligning

the entire proteins is the same as the sum of the scores of two subsequences of the

proteins, F(x1:M, y1:N)= F(x1:i, y1:j)+ F(xi+1:M, yj+1:N) where M is the length of sequence

x, N is the length of sequence y, and 1<i<M and 1<j<N. From this, we can see that the

optimal score of two partial sequences is the sum of score of residue i in sequence x and

residue j in sequence y, and the maximum score aligning the rest of the sequences [25].

The overall time complexity of this algorithm is O(MN) and the total space complexity

of this algorithm is O(MN) [24] .

www.manaraa.com

 17

It is important to note here that the Needleman-Wunsch algorithm supports different

scores for exact residue matches, similar residues, and gaps. A PAM or BLOSUM

weight matrix can be used to weight residue matching scores[25]. These weighted

scores can affect the final alignment of the two protein sequences and the biological

relevance of the alignment, but will not affect the time or space complexity of the

algorithm because the number of operations will not change. This alignment is limited,

however, because it can only align entire proteins. A different algorithm was developed

to create local alignments[26].

3.2 Smith-Waterman algorithm

The Smith-Waterman algorithm was published in 1981 [29] and is very similar to the

Needleman-Wunsch algorithm. Yet, the Smith-Waterman algorithm is different in that

it is a local sequence alignment algorithm. Instead of aligning the entire length of two

DNA sequences, this algorithm finds the region of highest similarity between two

DNAs. This is potentially more biologically relevant due to the fact that the ends of

DNA tend to be less highly conserved than the middle portions, leading to higher

mutation, deletion, and insertion rates at the ends of the sequence.

Only two things were changed in the Needleman-Wunsch algorithm to obtain the

Smith-Waterman algorithm[29]. When filling the matrix, we do not let any of the matrix

values become negative,and thus we consider 0 as potentially being the maximum value

of the three other cases (where xi =yj, or there is a gap in x or a gap in y). By not letting

any of the values go below zero, we stop considering regions of high dissimilarity

which have no good alignments. This allows the algorithm to focus on only those

regions of the protein which are similar. The second change in the algorithm is in the

traceback. Instead of starting at the n-terminus of both sequences, we start at the cell

with the highest score in the entire matrix. This allows for the alignment of the similar

subsequences of the proteins [26].

The complexity of the Smith-Waterman algorithm can also be computed. The time

complexity of the initialization is O(M+N) because we need to initialize row 0 and

column 0. In filling the matrix, we traverse each cell of the matrix and perform a

constant number of operations in each cell, and thus the time complexity for this part is

www.manaraa.com

 18

O(MN). Thus far, the complexity of the Smith-Waterman algorithm is exactly the same

as that for the Needleman-Wunsch algorithms. However, in the traceback, the algorithm

requires the maximum cell be found, and this must be done by traversing the entire

matrix, making the time complexity for the traceback O(MN) [26]. It is also possible to

keep track of the largest cell during the matrix filling segment of the algorithm,

although this will not change the overall complexity. Thus the total time complexity of

the Smith-Waterman algorithm is

O(M+N)+ O(MN) + O(MN) =O(MN)

which is identical to the complexity of the Needleman-Wunsch algorithm. The overall

running time of this algorithm is actually slightly slower than the Needleman-Wunsch

algorithm however, because more comparisons must be made when comparing the

scores to 0, and when finding the largest cell during the traceback [24].

The space complexity of the Smith-Waterman algorithm is also unchanged from the

Needleman -Wunsch algorithm. This is due to the fact that the same matrix is used and

the same amount of space is needed for the traceback. Thus, there is no definite space or

time advantage of one algorithm over the other. However, the Smith-Waterman

algorithm tends to model protein homology better because it ignores misalignments at

the ends of the proteins which are often not highly conserved. Thus, database searches

are usually done with the Smith-Waterman algorithm over the Needleman-Wunsch

algorithm which tends to model homology better in distantly related proteins.The

Needleman-Wunsch algorithm will tend to be better for proteins which are closely

related, with fewer mutations because the ends of the protein in closely related

sequences will not be changed significantly [26].

The overall time complexity of this algorithm is O(MN) and the total space complexity

of this algorithm is O(MN) [24].

Affine Gap Penalty

In the Needleman-Wunsch and the Smith-Waterman algorithms, there existed a constant

gap penalty, d, for a single missing or inserted residue. Thus, to insert a gap of size l, the

total penalty would be d*l. However, in biological systems, a deletion or insertion of a

www.manaraa.com

 19

large number of residues may be significantly less rare than this, and thus, a different

model of gap penalties must be used [26].

Realistically, gaps of different sizes would all have different penalties, but using this

model increases the complexity of either algorithm from O(MN) to O(M2N). This is

because when computing the score of each cell, instead of finding the maximum of

three adjacent cells, we must find the number of cells to the right or down which also

are included in the gap. Thus, we must look at i+j+1 cells, which increases the time

complexity to O(M2N) [26].

To get around this increase in complexity, we can use affine gap penalties in which the

initial gap opening penalty is set at a constant value, d, and extending the gap by a

single residue is set at a constant, lower value, e. This linear gap penalty function is

easier to deal with. In this case, we must keep track of two things for each cell in the

matrix. We must keep track of the score of the aligned subsequences x1:i and y1:j plus the

score of aligning xi and yj. We can store these values in matrix F(i,j). We must also keep

track of the score of the aligned subsequences x1:i and y1:j plus the score of inserting a

gap at either xi or yj. We can store these values in G(i,j). Here F(i,j) is the max score

when xi and yj are aligned (either ending a gap at G(i-1,j-1), or continuing an alignment

in F(i-1,j-1)). G(i,j) is the max score when either starting a gap in F with a penalty of d

or extending a gap in G with an extension penalty of e [26].

The initialization, in this case, is also O(M+N) because row 0 and column 0 must

initialized to the linear gap penalty, d+(j-1)e or d+(i-1)e respectively. In the iterative

phase, we now have two matrices to fill, but each cell of both matrices still only

requires a constant number of operations. Each matrix has a time complexity of O(MN)

yielding 2O(MN) = O(MN) complexity. Finally, the traceback is still O(M+N) because

it is unchanged. Thus, the total time complexity is O(MN) which is the same

as the Needleman-Wunsch and Smith-Waterman complexities [26].

The space complexity must take into account both matrices and the space needed for

traceback on both matrices. Since the space complexity of a single matrix is O(MN), the

space complexity for two matrices is 2O(MN)=O(MN).Thus, the space complexity is

also unchanged. However, the actual space used is two times the space used for

www.manaraa.com

 20

Needleman-Wunsch and Smith-Waterman, and the running time is also about two times

as long for the affine gap model.Thus,we see that increasing biological accuracy

involves a sacrifice in efficiency [29].

3.3 FASTA algorithm

The FASTA algorithm was developed in 1985 by Lipman and Pearson [18]. Unlike the

Needlman-Wunsch and Smith-Waterman algorithms, FASTA approximates the optimal

alignment by searching and matching k-tuples, or subsequences of length k. The

algorithm assumes that related proteins will have regions of identity, and by searching

with k-tuples, the FASTA algorithm allows small regions of local identity to be found

quickly. For proteins, these k-tuples tend to be of length two. FASTA creates a hash

table of all possible k-tuples and goes through the entire query protein of length N and

inputs the location of all the k-tuples into the table. Each k-tuple in the database

sequence can be looked-up in the hash table, and any matches will allow the algorithm

to mark the matching cells in the matrix. This results in a matrix in which all points of

local identity of length k are marked [18].

The FASTA algorithm then identifies the ten highest scoring diagonal runs by

identifying each marked point on the matrix, and adding a positive score for every other

marked cell along a diagonal, and subtracting a penalty for unmarked cells between

marked cells along the diagonal. These ten highest scoring segments are kept, and all

other segments of local alignment are discarded. The ten diagonals are scored once

again using an amino acid weight matrix (PAM or BLOSUM matrix) and any diagonals

with scores below a threshold are discarding again. The highest scoring diagonal is

termed init1. Thus, we are left with ten or fewer regions in which the two proteins align

with no gaps (although mismatches are allowed in the form of missing marked cells

along the diagonal). The FASTA algorithm assumes that the optimal alignment will

include or be near the init1 diagonal [26].

The FASTA algorithm is substantially faster than the Needleman-Wunsch or Smith-

Waterman alignments and thus can be more easily used in database queries [26].

www.manaraa.com

 21

In the worst case, the time complexity of FASTA is O(MN) and the space complexity of

this algorithm is also O(MN). But the average-case complexity would be about

O(MN/20^k) .Thus, the complexity of the FASTA algorithm depends on the size of the

k-tuples, and the larger the k-tuples, the faster the algorithm. Although the FASTA

algorithm is faster than any of the previous algorithms, it is not guaranteed to find the

optimal alignment between two proteins [24] .

3.4 BLAST algorithm

The BLAST (Basic Local Alignment Search Tool) algorithm was developed by

Altschul et al.in 1990 [1] and similar to the FASTA algorithm, is also a heuristic

pairwise sequence aligner. However, the basis of the BLAST algorithm is the use of

words and High-scoring Segment Pairs (HSPs) instead of k-tuples .BLAST begins by

finding all words, or subpeptides of length w (typically 3), which exist in the protein

sequence. Using a substitution matrix, a list of other words, called a neighborhood, is

created for each word found in the protein sequence; these words must be related to the

original word and must have a substitution matrix score higher than T, else they are not

considered. For fast access to these data, the word positions are entered into a hash

table. Each word in the database sequence can be compared to the hash table, and only

those matches which are deemed statistically significant by a statistical method will be

kept. This significantly reduces the number of hits which must be analyzed. Every

match of a word in the database sequence with one of the neighbor words is called a

High-scoring Sequence Pair (HSP) and these act as “seeds” to start a local sequence

alignment [26]. The time complexity of BLAST is O(20^W) and the space complexity

is O(20^W+MN) [24] .

3.5 PatternHunter

Ma, Tromp and Li had a quite different observation. Drawing upon ideas from the

pattern matching literature, they noted that one can find seeds in more alignments if one

requires an exact match in k positions, but does not require them to be consecutive.

Their program, PatternHunter [19] and its sequels [17], allow one to find local

alignments of either nucleotide or protein sequences, using this approach [15] .

www.manaraa.com

 22

When a comparison made of PatternHunter with Blastn and MegaBlast which are an

enhanced versions of BLAST via BL2SEQ, using the most favorable parameters for

Blastn and MegaBlast and standard parameters for PatternHunter. On a computer: PIII

700Mhz, 1G main memory here are the results that shows that the PH is much faster

than Blastn [19] .

Table 3.1: PatternHunter compared to Blastn [19]

Sequence Length Blastn PatternHunter

816k vs 580k 47 sec 9 sec

4639k vs 1830k 716 sec 44 sec

20M vs 18M out of memory 13 min

The next figures shows a comparison of PH with Megablast on long sequences and the

time and memory results .

Figure 3.1 : PatternHunter compared to Megablast [19]

www.manaraa.com

 23

The output quality is also on par with the default Blastn and much superior to

MegaBlast; the next figure shows a typical comparison of how alignment scores fall off

(from best to worst) [19].

Figure3.2: PH alignment rank and score.

At default Blastn sensitivity, PatternHunter runs at MegaBlast speed, using only 1/4 of

the memory used by either program. For a genome of length N, PatternHunter requires

about 8N bytes of internal memory. When given two inputs of lengths M and N,

PatternHunter requires M+8N internal memory. Memory usage can be reduced with

PatternHunter's automatic database partitioning feature [19]

There is also a comparison of the time and sensitivity of different configurations of

PatternHunter with BLAST. In the following figure, Smith-Waterman algorithm's

sensitivity is set to be 100%. And the sensitivity curves of PatternHunter and BLAST

indicate how many of the homologies found by Smith-Waterman can be found by

PatternHunter and BLAST, respectively. The data we used in this comparison are

approximately 30k mouse EST sequences (25Mb) and 4k human EST sequences (3Mb).

According to the figure, PatternHunter with 4 seeds run at the same speed of BLAST

but with sensitivity close to Smith-Waterman [19]. PatternHunter finds a lot of

alignments not found by MegaBlast [19].

www.manaraa.com

 24

Figure 3.3: PH sensitivity [19].

We depended on patternHunter for our research results and discussion because it’s the

closest one to our work , and approved to be the best among related work in results .

www.manaraa.com

 25

Chapter Four

Methodology

In this thesis we have tried to increase the sensitivity of finding the approximate local

similarities between two pairs of DNA sequences without decreasing in time at

minimum .

The sensitivity of the alignment algorithm is the key to the success of such methods .

The sensitivity of a search algorithm, however can have a crucial effect on the quality of

the annotation; different algorithms will find(and miss) different potential homologues

under different circumstances [26].

In order to achieve our objectives we have used Heuristics , Scoring Matrices , Word

length (Seed) , and String matching techniques.

4.1 Heuristics

 Because of the large search space in alignment problem which may grow in an

exponential fashion we have used heuristics to reduce this search complexity by

pursuing the most promising paths in the state space. In state space search , a heuristic is

formalized as a rule for choosing those branches in a state space that are most likely to

lead to an acceptable problem solution [7].

A heuristic is a”rule of thumb,” a guideline that wasn’t proven mathematically but our

intuition /experience tells us is correct. When working under heuristic assumptions we

can not guarantee that we will get the best answer, but we will get a correct answer, and

in most cases it will be a good answer. Heuristics are usually used to improve run time

[31].

 The aim of heuristic is to eliminate unpromising states and their descendants from

consideration by the heuristic algorithm in order to find a solution in a feasible

computational time .Filtration is based on the observation that a good alignment usually

includes short identical or highly similar fragments . Thus we search for short exact

matches and use these short matches as seeds for further analysis.

www.manaraa.com

 26

When working with local alignments it is of interest to have an alignment with the

highest score . We eliminated alignments with negative scores and zero score.

4.2 Scoring Matrices

A two-dimensional matrix containing all possible pair-wise nucleotides scores is called

a scoring matrix. Scoring matrices are also called substitution matrices because the

scores represent relative rates of evolutionary substitutions. Scores are real numbers but

are usually represented as integers in text files and computer programs [27].

A sequence can be described in terms of the number of bits needed to specify its

message .The correspondence between two aligned sequences can be expressed in terms

of similarity/identity score [13]. Scoring penalties are introduced to minimize the

number of gaps, the total alignment score is then a function of the identity between

aligned residues and the gap penalties incurred [13].

Such matrices are constructed for:

1-Evaluating match/mismatch between any two characters.

2-A score for insertion / deletion.

3-Optimization of total score.

4-Evaluating the significance of the alignment .

The scoring scheme that we have used consists of residue substitution scores (i.e. score

for each possible residue alignment) plus penalties for gaps which is the same scheme

used by PatternHunter [19]. The alignment score is the sum of substitution scores and

gap penalties. The alignment score thus reflects goodness of alignment. An example of

a simple scoring scheme for DNA: Use ‘+1’ as a reward for match, and ‘-1‘ as the

penalty for mismatch, and ignore gaps. Thus, for DNA we can construct the following

substitution matrix N x N for this simple scoring scheme:

- C T A G

C +1 -1 -1 -1

T -1 +1 -1 -1

A -1 -1 +1 -1

G -1 -1 -1 +1

www.manaraa.com

 27

A Substitution Score is chosen for each aligned pair of letters. The matrix scores highly

identical matches of bases, and also gives 'better' scores to alignments of non-identical

bases that are similar in some way, and a 'worse' score to pairs that are very dissimilar.

The alignment score is the sum of the scores specified for each of the aligned pairs of

letters, and letters with nulls, in the alignment. The higher the alignment score, the

better the alignment.

Figure 4.1: Alignment score [32]

The scoring scheme that we have used :

-1 for mismatch

-5 for gap opening

-1 for gap extention

+1 for matched

4.3 Word length (Seed)

If the word length is too small the computational time increase and the sensitivity will

also increase .And if the word length is large the computational time will decrease and

the sensitivity decrease. Large seeds lose distant homology while small ones creates too

many random hits which slow down the computation [19] .

In this research we tried to balance between word length and sensitivity in order to

achieve good computational time with good result. We have used the word length 9 in

the AFALS-N(An Algorithm for Finding Approximate Local Similarities in DNA

Sequences–Najah) algorithm and word length 11 as a second version of it , that to

compare it with PatternHunter which uses both word length .

www.manaraa.com

 28

4.4 String Matching Techniques

Sequence alignment is a string-matching procedure. We have get benefit of using fast

string matching algorithm besides alignments technique .We have used a KMP

algorithm as a filtration mechanism to eliminate unpromising words [26].

The algorithm of Knuth, Morris and Pratt makes use of the information gained by

previous symbol comparisons. It never re-compares a text symbol that has matched a

pattern symbol. As a result, the complexity of the searching phase of the Knuth-Morris-

Pratt algorithm is in O(n) [26].

However, a preprocessing of the pattern is necessary in order to analyze its structure.

The preprocessing phase has a complexity of O(m). Since m n, the overall complexity

of the Knuth-Morris-Pratt algorithm is in O(n) [26].

Definition: Let A be an alphabet and x = x0 ... xk-1, k a string of length k over A.

A prefix of x is a substring u with

u = x0 ... xb-1 where b {0, ..., k}

i.e. x starts with u.

A suffix of x is a substring u with

u = xk-b ... xk-1 where b {0, ..., k}

i.e. x ends with u.

A prefix u of x or a suffix u of x is called a proper prefix or suffix, respectively, if u x,

i.e. if its length b is less than k.

A border of x is a substring r with

r = x0 ... xb-1 and r = xk-b ... xk-1 where b {0, ..., k-1}

www.manaraa.com

 29

A border of x is a substring that is both proper prefix and proper suffix of x. We call its

length b the width of the border.

Example: Let x = abacab. The proper prefixes of x are

ε, a, ab, aba, abac, abaca

The proper suffixes of x are

ε, b, ab, cab, acab, bacab

The borders of x are

ε, ab

The border ε has width 0, the border ab has width 2.

The empty string ε is always a border of x, for all x A+. The empty string ε itself has

no border.

The following example illustrates how the shift distance in the Knuth-Morris-Pratt

algorithm is determined using the notion of the border of a string .

Example:

0 1 2 3 4 5 6 7 8 9 ...

a b c a b c a b d

a b c a b d

 a b c a b d

The symbols at positions 0, ..., 4 have matched. Comparison c-d at position 5 yields a

mismatch. The pattern can be shifted by 3 positions, and comparisons are resumed at

position 5.

The shift distance is determined by the widest border of the matching prefix of p. In this

example, the matching prefix is abcab, its length is j = 5. Its widest border is ab of width

b = 2. The shift distance is j – b = 5 – 2 = 3.

www.manaraa.com

 30

In the preprocessing phase, the width of the widest border of each prefix of the pattern

is determined. Then in the search phase, the shift distance can be computed according to

the prefix that has matched[26].

Theorem [26] : Let r, s be borders of a string x, where |r| < |s|. Then r is a border of s.

Proof: Figure 1 shows a string x with borders r and s. Since r is a prefix of x, it is also a

proper prefix of s, because it is shorter than s. But r is also a suffix of x and, therefore,

proper suffix of s. Thus r is a border of s.

Figure 4.2: Borders r, s of a string x

Definition: Let x be a string and a A a symbol. A border r of x can be extended by a,

if ra is a border of xa.

Figure 4.3: Extension of a border

Figure 3 shows that a border r of width j of x can be extended by a, if xj = a.

In the preprocessing phase an array b of length m+1 is computed. Each entry b[i]

contains the width of the widest border of the prefix of length i of the pattern

(i = 0, ..., m). Since the prefix ε of length i = 0 has no border, we set b[0] = -1.

Figure 4.4: Prefix of length i of the pattern with border of width b[i]

www.manaraa.com

 31

Provided that the values b[0], ..., b[i] are already known, the value of b[i+1] is computed

by checking if a border of the prefix p0 ... pi-1 can be extended by symbol pi. This is the

case if pb[i] = pi (Figure 3). The borders to be examined are obtained in decreasing order

from the values b[i], b[b[i]] etc.

The preprocessing algorithm comprises a loop with a variable j assuming these values.

A border of width j can be extended by pi, if pj = pi. If not, the next-widest border is

examined by setting j = b[j]. The loop terminates at the latest if no border can be

extended (j = -1).

After increasing j by the statement j++ in each case j is the width of the widest border

of p0 ... pi. This value is written to b[i+1] (to b[i] after increasing i by the statement i++)

[26].

Algorithm 4.1: KMP Preprocessing algorithm :

Let m = size of the pattern, b= the border, p=the pattern,

void kmpPreprocess()

{

 int i=0, j=-1;

 b[i]=j;

 while (i<m)

 {

 while (j>=0 && p[i]!=p[j]) j=b[j];

 i++; j++;

 b[i]=j;

 }

}

Example: For pattern p = ababaa the widths of the borders in array b have the following

values. For instance we have b[5] = 3, since the prefix ababa of length 5 has a border of

width 3.

j: 0 1 2 3 4 5 6

p[j]:a b a b a a

b[j]:-1 0 0 1 2 3

www.manaraa.com

 32

Conceptually, the above preprocessing algorithm could be applied to the string pt

instead of p. If borders up to a width of m are computed only, then a border of width m

of some prefix x of pt corresponds to a match of the pattern in t (provided that the

border is not self-overlapping) (Figure 4.5)[26].

Figure 4.5: Border of length m of a prefix x of pt

This explains the similarity between the preprocessing algorithm and the following

searching algorithm.

Algorithm 4.2: KMP Searching algorithm :

Let n= size of the text, m= size of the pattern, b= the border, p=the pattern

void kmpSearch()

{ int i=0, j=0;

 while (i<n)

 { while (j>=0 && t[i]!=p[j]) j=b[j];

 i++; j++;

 if (j==m)

 { report(i-j);

 j=b[j];

 }

 }

}

When in the inner while loop a mismatch at position j occurs, the widest border of the

matching prefix of length j of the pattern is considered (Figure 4.5). Resuming

comparisons at position b[j], the width of the border, yields a shift of the pattern such

that the border matches. If again a mismatch occurs, the next-widest border is

considered, and so on, until there is no border left (j = -1) or the next symbol matches.

Then we have a new matching prefix of the pattern and continue with the outer while

loop.

www.manaraa.com

 33

Figure 4.6: Shift of the pattern when a mismatch at position j occurs

If all m symbols of the pattern have matched the corresponding text window (j = m), a

function report is called for reporting the match at position i-j. Afterwards, the pattern is

shifted as far as its widest border allows.

In the following example the comparisons performed by the searching algorithm are

shown.

Example:

0 1 2 3 4 5 6 7 8 9 ...

a b a b b a b a a

a b a b a c

 a b a b a c

 a b a b a c

 a b a b a c

 a b a b a c

The inner while loop of the preprocessing algorithm decreases the value of j by at least

1, since b[j] < j. The loop terminates at the latest when j = -1, therefore it can decrease

the value of j at most as often as it has been increased previously by j++. Since j++ is

executed in the outer loop exactly m times, the overall number of executions of the

inner while loop is limited to m. The preprocessing algorithm therefore requires O(m)

steps [26]. From similar arguments it follows that the searching algorithm requires O(n)

steps. The above example illustrates this. The whole staircase is at most as wide as it is

high; therefore at most 2n comparisons are performed [26]. Since m n the overall

complexity of the Knuth-Morris-Pratt algorithm is in O(n) [9].

www.manaraa.com

 34

Chapter Five

The proposed Algorithm

5.1 Algorithm Description

The algorithm (AFALS-N) finds the regions of highest similarity between two

sequences, thus generating one or more islands of matches or sub-alignments in the

aligned sequences.

Steps of alignment algorithm:

1-Build a complete list of all words in one sequence and make this into a table.

2-For each word in the second sequence a simple lookup in the table shows every match

in the first sequence.

3-A negative score/weight is given to mismatches. Therefore, score drops (from initial

zero value) as more and more mismatches are added .Hence the score will rise in a

region of high similarity and then fall outside this region.

Scoring function for gapped alignment:

f = Σ match score – (mismatch score+ gap score)…………………… (5.1)

4-The alignments are produced by starting at the highest scoring positions in the scoring

matrix and trace the path from those positions up to a box that scores zero.

The next figure shows the input and output of AFALS-N algorithm .It has two inputs

which are a DNA sequences and 3 approximate local similarity strings.

www.manaraa.com

 35

Figure 5.1: AFALS-N Algorithm

Description of input and output

1-Input:

DNA Sequence 1: S with size n.

 S= { i1, i2, …, in}

DNA Sequence 2: T with size m.

 T= {j1,j2,…,jm}

2-Output:

Three alignment or approximated substrings

Word size = w = 9 & 11

Possible words = └ m/w ┘………………………………………..…..(5.2)

DNA

Sequence

1

DNA

Sequence

2

AFALS-N

Algorithm

Approximate local

similarities

Input Output

www.manaraa.com

 36

Figure 5.2:AFALS Algorithm Flow chart.

AFALS-N produce local alignments in four phases .In the first phase , the sequence to

be compared is partitioned .The second phase KMP is used to find exact matches . In

the third phase the candidate words are extended using gaps . Finally in the fourth phase

the maximum three alignments are selected and shown as an output of the algorithm.

Phase 1: Data Partitioning

We partition the second DNA sequence (T with size m) to Z substrings depending on

the next formula : Z = m/11 where 11 is the word size .

Next is an example of data partition where a sequence of size 44 is partitioned to 4

strings with size = 11 .

Insert two DNA Sequences

Generate possible words in the

second DNA sequence using

sliding window

Search the first sequence for exact

matches of possible words using

KMP

Extend the matched words

Search the first sequence using

AFALS and score found alignments

Show words with the highest three

scores

www.manaraa.com

 37

Figure5.3 : Data partition example .

Phase 2: KMP

The inputs to the KMP algorithm are the substrings generated by phase1. And the

outputs are the candidate seeds with their indexes (the index were the KMP start to find

the seed).

The output of this phase looks like as shown in the following figure .

Candidate seeds indexes

Figure5.4 : KMP output example .

Phase 3: Gap Extension

A gap is a maximal consecutive run of spaces in a single string of a given alignment. It

corresponds to an atomic insertion or deletion of a substring [26].Gap extension is the

process of inserting gaps wherever there is a mismatch.

AAGCGCCATA GCTCGGGCCC ACTCTCAGCC CGGGATGCAT TCCT

AAGCGCCATA G

TCTCAGCC CGG

CTCGGGCCC AC

GATGCATTCCT

AAGCGCCATA G

TCTCAGCC CGG

1

 22

AAGCGCCATA G

TCTCAGCC CGG

1

 22

www.manaraa.com

 38

The penalty of gap is -5 and for gap extension it is -1 . When there is a mismatch gap is

inserted and score is decremented .If the score falls than K the extension will stop and

the word is discarded from candidates .

K is the similarity score which must not be less than 90% .The allowable number of

mismatches is 10 %.That because the mean number of wrongly inferred indels and gap

character states increases with substitution rate for closely related sequences , the error

segments are short and frequently result from a single indel being erroneously

positioned . As the two sequences farther diverge , the errors multiply.At the same time,

neighboring indels in the true alignment being inferred with one another produce

several segments where several indels are simultaneously misplaced . At the higher

divergence rates , the error segments get longer and longer , with relatively short

intervening correct segments , until almost the whole reconstructed alignment consist of

error segments [26].

If the KMP finds the word it saves it in a table with the specified index. At phase 3 gap

extension will start .It will use the indexes that have been saved in the phase 2.

Here is the pseudo code for this phase

Algorithm 5.1: AFALS-N Gap extension algorithm:

Let w := 11 //word size

Let score is the alignment score //initialized to word size

Let k := 0 //number of allowed mismatch

Get List of candidate words index from Kmp result table

For index :=1 to K>10% of the score //number of matches

If character[index+w]:=character[seedIndex+w]

score+=1

 gap_start := false

If character[index+w]!=character[seedIndex+w]

score +=-1

If gap_start := false

score+=-5

gap_start : =true

 Else Score+= -1

Next index

www.manaraa.com

 39

Phase 4: Output Selection

The aligned substrings that have the maximum three score will be shown in the result

screen.

Example :

The input of the AFALS-N algorithm is the next two DNA sequences:

Sequence 1: aaacctggagcacgaacctgccacccccccccgggtttcag

Sequence 2: aaacctggagcaaaaacctgcc

Phase 1 output:

In phase 1 the second sequence is partitioned to seeds of size 11 as shown next.

Seed1: aaacctggagc size=11

Seed2: aaaaacctgcc size=11

Phase 2 output:

In phase 2 kmp searches for seeds in the first sequence and save the index where the

match starts. In this example it only found one match for the first seed and save the

index for the next phase use.

aaacctggagc index : 1

Phase 3 output:

In gap extension phase wherever there is a mismatch a gap is inserted and the penalty

of a mismatch and a gap is added to the score.

aaacctggagcacgaacctgccacccccccccgggtttcag
aaacctggagca- -aacctgcc

score = 11

score+= 1 match

score+=-1 mismatch

score+=-5 gap open

score+=-1 mismatch

score+=-1 gap extension
score+= 1 match

score+= 1 match

score+= 1 match

score+= 1 match

score+= 1 match

score+= 1 match

score+= 1 match

score+= 1 match

www.manaraa.com

 40

Score = 12

The output of this phase is:

aaacctggagca- -aacctgcc
and its score (12)

Phase 4 output :

Since there is one alignment it is the only output with its score .

Algorithm Time and space complexities

In the phase1 the algorithm needs m/w space , same in the phace2 and phace3 , so the

space complexity for AFALS-N algorithm is O(m) since w is a constant.

Time complexity for KMP is O(n), and for phase3 is O(zm) w here z is the number of

candidate words . So the overall AFALS-N complexity is O(n +z m).

www.manaraa.com

 41

Chapter Six

AFALS-N Software

AFALS-N software is a demonstration for the AFALS-N algorithm . It was built using

java .In the next pages we presented to the development model , the implementation of

this software , and the interface screen shots .

6.1 Software Development Model

A software process is a framework of activities that are required to develop software. A

software process model is a development strategy that encompasses the process,

methods, tools and generic phases used during the development of software In other

words, a software process model is an abstraction, which is used to describe the steps

involved in a software process [21] .

We have chosen to use a modified Waterfall Model as a standard software process

model that we can follow for the development of this project.

The waterfall model is the classic model of software engineering. It has deficiencies, but

it serves as a baseline for many other lifecycle models.The pure waterfall lifecycle

consists of several non-overlapping stages, as shown in Figure 6.1. It begins with the

software concept and continues through requirements analysis, architectural design,

detailed design, coding, testing, and maintenance [30].

www.manaraa.com

 42

Figure 6.1: Classical Waterfall Model [30].

The waterfall model does not prohibit returning to an earlier phase, for example, from

the design phase to the requirements phase. This leeds to many versions of modified

waterfall model [30].

These modifications tend to focus on allowing some of the stages to overlap, reducing

the documentation requirements, and reducing the cost of returning to earlier stages to

revise them. Another common modification is to incorporate prototyping into the

requirements phases [21].

Overlapping stages such as requirements and design make it possible to feed

information from the design phase back into the requirements.

www.manaraa.com

 43

Figure 6.2: Modified Waterfall Model [30].

• System requirements—Establishes the components for building the system. This

includes the hardware requirements (number of channels, acquisition speed, and

so on), software tools, and other necessary components.

• Software requirements—Concentrates on the expectations for software

functionality. You identify which of the system requirements the software

affects. Requirements analysis might include determining interaction needed

with other applications and databases, performance requirements, user interface

requirements, and so on.

• Architectural design—determines the software framework of a system to meet

the specified requirements. The design defines the major components and the

interaction of those components, but it does not define the structure of each

www.manaraa.com

 44

component. Also determine the external interfaces and tools to use in the

project.

• Detailed design—examines the software components defined in the

architectural design stage and produces a specification for how each component

is implemented.

• Coding—Implements the detailed design specification.

• Testing—determines whether the software meets the specified requirements and

finds any errors present in the code.

We have used black box testing. Black Box Testing is not a type of testing; it instead is

a testing strategy, which does not need any knowledge of internal design or code etc. As

the name "black box" suggests, no knowledge of internal logic or code structure is

required. The types of testing under this strategy are totally based/focused on the testing

for requirements and functionality of the work product/software application. Black box

testing is sometimes also called as "Opaque Testing", "Functional/ Behavioral Testing"

and "Closed Box Testing" [30].

The base of the Black box testing strategy lies in the selection of appropriate data as per

functionality and testing it against the functional specifications in order to check for

normal and abnormal behavior of the system. Nowadays, it is becoming common to

route the Testing work to a third party as the developer of the system knows too much

of the internal logic and coding of the system, which makes it unfit to test the

application by the developer [21]. In order to implement Black Box Testing Strategy,

the tester is needed to be thorough with the requirement specifications of the system and

as a user, should know, how the system should behave in response to the particular

action.

• Maintenance—Perform as needed to deal with problems and

enhancement requests after the software is released.

www.manaraa.com

 45

6.2 Implementation

The algorithm implementation has been done using Java language, because of the built

in String classes and methods and its platform independent . Using a cross-platform and

object oriented ease of development of the Java programming language we have built a

simulation to AFALS-N algorithm .

We choose the BlueJ version 1.3.5 as a coding environment . BlueJ is an integrated

Java environment specifically designed for introductory teaching.

Figure 6.3: BlueJ Screen .

BlueJ supports:

 fully integrated environment

 graphical class structure display

 graphical and textual editing

 built-in editor, compiler, virtual machine, debugger, etc.

 easy-to-use interface, ideal for beginners

www.manaraa.com

 46

 interactive object creation

 interactive object calls

 interactive testing

 incremental application development

The AFALS-N software has two classes ; The MainWindow class which has the main

functionality and components , and the Test class which has been used to create objects

from MainWindow classs .

Figure 6.4 : Classes in AFALS-N

www.manaraa.com

 47

Figure 6.5 : MainWindow Class .

Figure 6.6 : Test Class .

www.manaraa.com

 48

6.3 User Interface Screens

The user interface of the system has been designed based on the description of the

AFALS-N algorithm . A description of the user interface design and coding is shown

below and in the next few pages .

Building the user interface in java is difficult since every thing need programming .The

basic user interface component is the “form”. It contains all the controls that form the

shape of each screen. During the development phase, built in controls (that are provided

by the programming language itself) have been used to form up the final shape of the

system screens. Those include text boxes, buttons, labels, panels and tapped pane.

www.manaraa.com

 49

Figure 6.7 : AFALS-N screen .

User Interface Parts :

A-Menu bar

The menu bar contains four menus :

1-File Menu

Figure 6.8 : File menu

2-Edit Menu

Figure 6.9 : Edit menu

3-View Menu

Figure 6.10 : View menu

4-Help Menu

Figure 6.11 : Help menu

www.manaraa.com

 50

B-Alignment Tap

This tap is the default tap shown once we run the AFALS-N software . It consists of two

text area for the two DNA inputs .It also has five buttons for the basic operations .

-Align Button : Its start the alignment operation once its clicked.

-Show result Button: Shows the result .

-Clear Button : Clear the text areas.

-Cancel Button: Stop the alignment operation before it finished.

-Exit Button : Close the software screen .

www.manaraa.com

 51

Figure 6.12 : Alignment tap

B-Result tap

This is the second tap that shows the resulted alignment . It consist of three text boxes

with its aligned score .

Figure 6.13 : Result tap

C-About Tap

It’s the final tap of AFALS-N software that shows general info about the software .

www.manaraa.com

 52

Figure 6.14 : About tap .

D-Terminal Window

This terminal window shows the elapsed time for the alignment process .

Figure 6.15 : Terminal Window .

www.manaraa.com

 53

Chapter Seven

Results and discussion

In this chapter we analyze the simulation results that we obtained for different

sequences that we consider so as to measure the performance of the proposed algorithm.

We have tested the algorithm for different DNA sequences and compare it with

PatternHunter results.

7.1 Test environment

The proposed algorithm was implemented in Java .Real DNA sequences obtained from

the NCBI (National Center for Biotechnology Information), web page

(http://www.ncbi.nlm.nih.gov/) were used in the tests . Sample of the sequences are

presented in table 7.1 below.

Table 7.1: Organisms compared

Name Seq number Real size Approx

size

Acetobacter Pasteurians NC_004991 1440 BP 1 kBP

Bacteroides Fragilis NC_005026 1743 BP 1 kBP

HIV-1 isolate MB2059 from Kenya AF133821 10,035 BP 10 kBP

HIV-1 isolate SF33 from USA AY352275 10,280 BP 10 kBP

Chaetospheridium globosum AF494279 56,574 BP 50 kBP

Allomyces Macogynus NC_001715 57,473 BP 50 kBP

Human Herpesvirus 6B NC_000898 162,114 BP 150 kBP

Human Herpesvirus 4 NC_007605 171,823 BP 150 kBP

Agrobacterium tumefaciens NC_003064 542,869 BP 500 kBP

Rhizobium sp. NC_000914 563,165 BP 500 kBP

Chlamydia trachomatis CP000051 1,044,459 BP 1MBP

Chlamydia muridarum AE002160 1,072,950 BP 1MBP

Corynebacterium efficiens BA000035 3,147,090 BP 3MBP

Corynebacterium glutamicum BX927147 3,282,708 BP 3MBP

www.manaraa.com

 54

7.2 Sensitivity analysis

Sensitivity analysis is the study of how the variation in the output of an algorithm can

be apportioned, qualitatively or quantitatively, to different sources of variation in the

input of that algorithm.

In order to analyze AFALS-N sensitivity we have selected two known mutations with

known DNA as an input to the algorithm . These mutations are FLT3 and BRCA.

Mutation detection is increasingly undertaken as a tool for a wide spectrum of research

especially in cancer diseases

, disease association and clinical diagnostics. The

pharmaceutical industry spends billions of dollars to locate the mutated genes associated

with particular diseases.[13]

Figure 7.1 Affected person mutation [13] .

An example of such mutations is the FLT3 (Fms-related tyrosine kinase 3) mutation

which responsible for leukemia disease . FLT3 is the most commonly mutated gene in

human acute myeloid leukemia (AML) and has been implicated in its pathogenesis [23].

The clinical identification of FLT3 mutations in a prospective manner will yield

important information about the incidence and natural history of FLT3 mutations in

AML [14].

In addition, identification of FLT3 mutations is likely to become important for

optimization of patient care. Because FLT3 ITD mutations portend a worse prognosis, it

www.manaraa.com

 55

has been proposed that patients testing positive for a FLT3 mutation may benefit from

aggressive up-front treatment regimens such as an allogeneic bone marrow

transplantation. On-going clinical trials will determine whether AML patients with

FLT3 mutations will also benefit from novel therapeutic strategies that target and inhibit

FLT3 tyrosine kinase activity [14].

Figure7.2: Leukemia Mutations [20].

Germline mutations in breast cancer susceptibility genes, BRCA1 and BRCA2, are

responsible for a substantial proportion of high-risk breast and breast/ovarian cancer

families [6].

Breast cancer is the most commonly diagnosed cancer in women in world today. A

family history of the disease in a first degree relative significantly increases the risk of

disease. A segregation analysis demonstrated the existence of an autosomal dominant

pattern of inheritance accounting for 5-10% of breast cancer cases [6].

Figure 7.3: Breast Cancer Mutation [6].

www.manaraa.com

 56

We have used 50 DNA sample of infected people who has a leukemia or a breast

cancer. AFALS-N was able to catch the mutation for 33 person .That means that the

sensitivity of this algorithm is 0.66 .

Sensitivity = a/b ……………………………………………..(7.1)

where a is the number of cases that the algorithm catch and b is the number of the whole

cases considered in the testing .

7.3 Execution Time Evaluation

Behavior of algorithm with inputs of arbitrary length is shown in the following table.

The execution times according to the size of the sequences are presented in the table 7.2

below . AFALS-N has shown an acceptable execution time over different sequence

length .

Table 7.2 : Execution times for sequences of size ranging from 1 kBP to 3MBP

Execution time(Milliseconds) Sequence Size

225 1 kBP

543 10 kBP

878 50 kBP

1180 150 kBP

1809 500 kBP

2050 1MBP

8701 3MBP

Figure 7.1 shows the ratio between execution time and sequence size. We can notice

from the next chart that the behavior of AFALS-N algorithm under input size increase

tend to be stable even when the sequences size increased dramatically .

www.manaraa.com

 57

Execution times for sequences of size ranging from

1 kBP to 3MBP

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Execution

time(seconds)

Sequence Size

Figure7.4 :Execution times for sequences of size ranging from 1 kBP to 3MBP

7.3 Comparison with PatternHunter

In order to verify the quality of the results produced by AFALS-N , we have compared

it with PatternHunter .

Comparing to PatternHunter , AFALS-N with word size 9 achieved a better time as

shown in the table7.3 . The enhancement ratio is around 0.9 % .

Enhancement in execution time (F) computed by the equation 7.2 which is shown next

and sample execution time result is shown in table 7.3 .

F= average (AFALS-N execution time / PatternHunter execution time)…………..(7.2)

Table 7.3 : PatternHunter vs AFALS-N

Sequence Length PatternHunter AFALS-N

816k vs 580k 9 sec 7.5 sec

4639k vs 1830k 44 sec 38.6 sec

20M vs 18M 13 min 10.3 min

Also when we changed the word length from 9 to 11 AFALS-N performs better than

PatternHunter as shown in the next table with enhancement ratio = 0.85 . Table 7.4

shows sample of the comparison made between PattternHunter and AFALS-N.

www.manaraa.com

 58

Table 7.4 : PatternHunter vs AFALS-N(word size 11)

Sequence Length PatternHunter AFALS-N

816k vs 580k 7 sec 6 sec

4639k vs 1830k 39 sec 34.6 sec

20M vs 18M 11 min 9 min

www.manaraa.com

 59

Chapter Eight

Conclusion and Future Work

8.1 Conclusion

In this thesis we have suggested an Algorithm for Finding Approximate Local

Similarities in DNA Sequences (AFALS-N) and it was presented as an approximate

local similarities finder and as a pairwise alignment algorithm. It has been implemented

using java and tested with real DNA sequences.

The experiments have shown that the performance of AFALS-N was better than the

other algorithms mentioned in this study .When Compared with Pattern Hunter the

enhancement over execution time was 0.9%.

AFALS-N can also be used for non DNA data comparisons, like protein or amino acids

comparisons. Besides that it can be used for non biological string data approximate

matching.

A windows application for AFALS-N algorithm has been built using java , and it will

be applied in King Hussein Cancer Center in the Molecular Diagnostics and

Immunogenetics section .

8.2 Future work

As a future work we will consider different techniques to enhance AFALS-N

performance and usability.

We may consider a better candidate selection or verification techniques to reduce the

number of candidates or the verification time. Nonconsecutive models for words may

considered in order enhancing AFALS-N sensitivity.

The AFALS-N algorithm can be extended to be used in the biological database search

or connected to a server and modified to a web version.

www.manaraa.com

 60

References

1- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. "A Basic

Local Alignment Search Tool ", J.Mol.Biol.215,403-410 , 1990.

2-Andreej Poloski and Mark Kimmel , Bioinformatics , Book , Springer ,2007 .

3- Costas S. Iliopoulos and Thierry Lecroq , String Algorithmics , Book ,King's

College London Publications, 2004.

4-Dan E.Knan and Michael l.Raymor , Fundamental Concept of Bioinformatics

,Book ,Benjamin Cummings ,2003.

5- Dimitris Papamichail , " Improved algorithms for approximate string matching "

, BMC Bioinformatics , vol 10 , Suppl1 , 2009 .

6- Eva Machackova, Jiri Damborsky, Dalibor Valik, and Lenka Foretova ," Novel

Germline BRCA1 and BRCA2 Mutations in Breast and Breast/Ovarian Cancer

Families" , HUMAN MUTATION Mutation in Brief #459 ,WILEY-LISS, INC, 2001.

7-George F.Luger , Artificial Intelligence , Book , Adison Wesley , 2002 .

8- Giddy Landan and Dan Graur , "Characterization of pairwise and multiple

sequence alignment errors " , Gene , doi:10.1016 , 2008 .

9- Hyyro Heikki , Practical Methods for Approximate String Matching , Book

,Tampereen yliopiston laitosten julkaisut , 2003 .

10-Jason wang and Katherine Herbert , "Software engineering and knowledge

engineering in bioinformatics", Bioinformatics ,vol 20 , no 3 , 2000.

11- Jean Claverie and Cedric Notredame , Bioinformatics for dummies , Book , Wiley

Publishing ,2007 .

www.manaraa.com

 61

12- Jeff Augen , Bioinformatics in the post genomic era , Book , Addison-Wesley ,

2007 .

13-John Micheal , Computational Biology , Book ,Chapman and Hall , 2005.

14- Kathleen M. Murphy, Mark Levis, Michael J. Hafez, Tanya Geiger, Lisa C. Cooper,

and B. Douglas Smith, " Detection of FLT3 Internal Tandem Duplication and D835

Mutations by a Multiplex Polymerase Chain Reaction and Capillary

Electrophoresis Assay " , Journal of Molecular Diagnostics, Vol. 5, No. 2, May 2003.

 15- Kisman, D., M. Li, B. Ma, and L. Wang. "tPatternHunter: gapped, fast and

sensitive translated homology search", Bioinformatics, vol 12 , page 321-325 ,2005

16-Lesy Vinh and Ward C. Wheeler ," Pairwise Alignment with Rearrangements" ,

Genome Informatics , vol 45 , 2006.

17- Li, M., B. Ma, D. Kisman, and J. Tromp , "PatternHunter II: Highly Sensitive

and Fast Homology Search ", Journal of Bioinformatics and Computational Biology ,

vol 14 , 164 -175 , 2003 .

18- Lipman, D.J. and Pearson, W.R. " Rapid and Sensitive Protein Similarity

Searches" .Science . vol 11 , page 446-448 ,1985.

19- Ma, B., J. Tromp, and M. Li . "Patternhunter: Faster and more sensitive

homology search ", Bioinformatics , vol 18 , no 3 , page 440-445 ,2002 .

20- Maxime Crochemore , Christophe Hancart , and Thierry Lecroq , Algorithms on

Strings , Book , Springer ,1992 .

21- Mazza and Nelson, Software Engineering Standards, book ,Prentice-Hall, 1994.

22-Michael S.Waterman , Introduction to computational Biology , Book ,Chapman

and Hall , 2003.

www.manaraa.com

 62

23- Michele Malagola , Michela Rondoni , Costanza Bosi , Michele Baccarani , and

Giovanni Martinelli , " Rapid Detection of Flt3 Mutations in Acute Myeloid

Leukemia Patients by Denaturing HPLC " , Clinical Chemistry , vol 49:10

1642–1650 , 2003 .

24-Nadia Essoussi and Sandes Fayech , "A comparison of four pair-wise sequence

alignment method" . Bioinformation , vol 2(3): 166-168 ,2007 .

25- Needleman, S. B. and Wunsch, C. D. "A general method applicable to the search

for similarities in the amino acid sequence of two proteins" , J. Mol. Biol. 48, 443-

453, 1970.

26- Neil C. Jones and Pavel A. Pevzner ,An introduction to bioinformatics

algorithms ,Book , Massachusetts Institute of Technology ,2004.

27-P.Narayanan , Bioinformatics a primer , Book , New age international publishers ,

2006.

28-Pamela C.Chompe and Richard A.Harvey , Biochemistry , Book , Lippincott

Williams and Wilkins ,1994.

29- Smith, T. F. and Waterman, M. "Identification of common molecular

subsequences" , J. Mol. Biol. 147, 195-197,1981.

30- Sommerville I , Software Engineering, Sixth Edition, Addison Wesley, 2004.

31-Stuart J.Russel and Peter Norving , Artificial Intelligence a modern approach ,

Book, Prentice Hall , 2004 .

32-TK Attwood and DJ Parry smith , Introduction to bioinformatics , Book ,

Addison-Wesley ,2005.

www.manaraa.com

 63

 :ا�����

��د ����� ا����� �� ا��� ا��وي ��"�! إ)DNA (وي��وه� �"(.اح(أه, ا"�'&�ت *�(ت�'&% ا��� ا

�Eش *'? وج�د *�ABت ا@ �? �&8 ا<ح��ض أو �>�;(م '!�9 *8 ا67 ات ا�را4&3 ذات ا(11ت

3&F ��(ا7 ق ا"B.ا)����د ا67 ات ا�راH� 3&4, ج(ا ��4E *'? إن إ)A ��� ?F �!"� ا 3�JB�ج&3 ا

 ,Hح&�ت. ?'*)*�<� ��� 3&�'J�K��ت ا 3&�&��!� أ��L �� ت�(�(درج3 ت���� ا>1Bت ا @��>�;(م ا����� ا

 �M��&��ت ا�36��K ح(' 3��&� .ا�" ف *'? ا�NJ�O ا

!��3 أه, � ق ا!�9 *8 ����� ا����� �� سBس% ا��� ا��وي ا ا� !�زي ت�@>, ��K% رJ&>� إ? ن�*&8 ا

 3'�����3 ا�"��(ة *'? ت�@&3 ا���TJ ا� !����&K&3 و ا)����&K&3 .ا)�3 ا� !��&Xه� *8 ا<خ ى �� �� ��H�� %K

'���TJ ت@'% �8 ا8�X اBز 3&@��'!�9 مت8�L أ�L% ا���TJ �&��� ا .

�!� �� سBس% ا��� ا��وي) AFALS-N(ت, �� ه]Z ا(راس3 ا�A اح خ�ارز�&3 @���د ����� ا����� ا�\

)DNA (، 9�!�@'&% *�'&�ت ا �H'&'@3 و ت'���� .و���M% �!(أ *�% ا;�ارز�&3 *'? ت�@&3 ا���TJ ا

ت, ���ء � ��&3 ت7!� ا;�ارز�&3 ا�@� ح3 و ت, اخ�!�ر ا;�ارز�&3 ا�@� ح3 ��س�;(ام *&��ت ح�� ن�وي ح@&@&3

.

 9�! .و ا(3AوA(أHO ت ا���TJ ت�>�� �'��س� �8 ن�ح&3 وA_ ا

ح&9 آ�ن أدا�HJ ا�L% و �'a_ ن>!PatternHunter (3(و @(A�رن_ ا;�ارز�&3 ا�@� ح3 �` خ�ارز�&3

 % .٠،٩ا��>&8 ن��

www.manaraa.com

 64

Appendix A : Sample of test data

1- GAPDH Mutation

 LOCUS NG_007073 3880 bp DNA linear PRI 22-MAR-2009

 DEFINITION Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

on chromosome 12.

 ACCESSION NG_007073 REGION: 5001..8880

 VERSION NG_007073.2 GI:163954974

 SOURCE Homo sapiens (human)

 ORGANISM Homo sapiens

 COMMENT REVIEWED REFSEQ:

 This record has been curated by NCBI staff. The

 reference sequence was derived from AC006064.10.

 On Dec 28, 2007 this sequence version replaced gi:160358353.

ORIGIN

 1 aaattgagcc cgcagcctcc cgcttcgctc tctgctcctc ctgttcgaca gtcagccgca

 61 tcttcttttg cgtcgccagg tgaagacggg cggagagaaa cccgggaggc tagggacggc

 121 ctgaaggcgg caggggcggg cgcaggccgg atgtgttcgc gccgctgcgg ggtgggcccg

 181 ggcggcctcc gcattgcagg ggcgggcgga ggacgtgatg cggcgcgggc tgggcatgga

 241 ggcctggtgg gggaggggag gggaggcgtg tgtgtcggcc ggggccacta ggcgctcact

 301 gttctctccc tccgcgcagc cgagccacat cgctcagaca ccatggggaa ggtgaaggtc

 361 ggagtcaacg ggtgagttcg cgggtggctg gggggccctg ggctgcgacc gcccccgaac

 421 cgcgtctacg agccttgcgg gctccgggtc tttgcagtcg tatgggggca gggtagctgt

 481 tccccgcaag gagagctcaa ggtcagcgct cggacctggc ggagccccgc acccaggctg

 541 tggcgccctg tgcagctccg cccttgcggc gccatctgcc cggagcctcc ttcccctagt

 601 ccccagaaac aggaggtccc tactcccgcc cgagatcccg acccggaccc ctaggtgggg

 661 gacgctttct ttcctttcgc gctctgcggg gtcacgtgtc gcagaggagc ccctccccca

 721 cggcctccgg caccgcaggc cccgggatgc tagtgcgcag cgggtgcatc cctgtccgga

 781 tgctgcgcct gcggtagagc ggccgccatg ttgcaaccgg gaaggaaatg aatgggcagc

 841 cgttaggaaa gcctgccggt gactaaccct gcgctcctgc ctcgatgggt ggagtcgcgt

 901 gtggcgggga agtcaggtgg agcgaggcta gctggcccga tttctcctcc gggtgatgct

www.manaraa.com

 65

 961 tttcctagat tattctctgg taaatcaaag aagtgggttt atggaggtcc tcttgtgtcc

 1021 cctccccgca gaggtgtggt ggctgtggca tggtgccaag ccgggagaag ctgagtcatg

 1081 ggtagttgga aaaggacatt tccaccgcaa aatggcccct ctggtggtgg ccccttcctg

 1141 cagcgccggc tcacctcacg gccccgccct tcccctgcca gcctagcgtt gacccgaccc

 1201 caaaggccag gctgtaaatg tcaccgggag gattgggtgt ctgggcgcct cggggaacct

 1261 gcccttctcc ccattccgtc ttccggaaac cagatctccc accgcaccct ggtctgaggt

 1321 taaatatagc tgctgacctt tctgtagctg ggggcctggg ctggggctct ctcccatccc

 1381 ttctccccac acacatgcac ttacctgtgc tcccactcct gatttctgga aaagagctag

 1441 gaaggacagg caacttggca aatcaaagcc ctgggactag ggggttaaaa tacagcttcc

 1501 cctcttccca cccgccccag tctctgtccc ttttgtagga gggacttaga gaaggggtgg

 1561 gcttgccctg tccagttaat ttctgacctt tactcctgcc ctttgagttt gatgatgctg

 1621 agtgtacaag cgttttctcc ctaaagggtg cagctgagct aggcagcagc aagcattcct

 1681 ggggtggcat agtggggtgg tgaataccat gtacaaagct tgtgcccaga ctgtgggtgg

 1741 cagtgcccca catggccgct tctcctggaa gggcttcgta tgactggggg tgttgggcag

 1801 ccctggagcc ttcagttgca gccatgcctt aagccaggcc agcctggcag ggaagctcaa

 1861 gggagataaa attcaacctc ttgggccctc ctgggggtaa ggagatgctg cattcgccct

 1921 cttaatgggg aggtggccta gggctgctca catattctgg aggagcctcc cctcctcatg

 1981 ccttcttgcc tcttgtctct tagatttggt cgtattgggc gcctggtcac cagggctgct

 2041 tttaactctg gtaaagtgga tattgttgcc atcaatgacc ccttcattga cctcaactac

 2101 atggtgagtg ctacatggtg agccccaaag ctggtgtggg aggagccacc tggctgatgg

 2161 gcagcccctt cataccctca cgtattcccc caggtttaca tgttccaata tgattccacc

 2221 catggcaaat tccatggcac cgtcaaggct gagaacggga agcttgtcat caatggaaat

 2281 cccatcacca tcttccagga gtgagtggaa gacagaatgg aagaaatgtg ctttggggag

 2341 gcaactagga tggtgtggct cccttgggta tatggtaacc ttgtgtccct caatatggtc

 2401 ctgtccccat ctccccccca cccccatagg cgagatccct ccaaaatcaa gtggggcgat

 2461 gctggcgctg agtacgtcgt ggagtccact ggcgtcttca ccaccatgga gaaggctggg

 2521 gtgagtgcag gagggcccgc gggaggggaa gctgactcag ccctgcaaag gcaggacccg

 2581 ggttcataac tgtctgcttc tctgctgtag gctcatttgc aggggggagc caaaagggtc

 2641 atcatctctg ccccctctgc tgatgccccc atgttcgtca tgggtgtgaa ccatgagaag

 2701 tatgacaaca gcctcaagat catcaggtga ggaaggcagg gcccgtggag aagcggccag

 2761 cctggcaccc tatggacacg ctcccctgac ttgcgccccg ctccctcttt ctttgcagca

 2821 atgcctcctg caccaccaac tgcttagcac ccctggccaa ggtcatccat gacaactttg

 2881 gtatcgtgga aggactcatg gtatgagagc tggggaatgg gactgaggct cccacctttc

 2941 tcatccaaga ctggctcctc cctgccgggg ctgcgtgcaa ccctggggtt gggggttctg

www.manaraa.com

 66

 3001 gggactggct ttcccataat ttcctttcaa ggtggggagg gaggtagagg ggtgatgtgg

 3061 ggagtacgct gcagggcctc actccttttg cagaccacag tccatgccat cactgccacc

 3121 cagaagactg tggatggccc ctccgggaaa ctgtggcgtg atggccgcgg ggctctccag

 3181 aacatcatcc ctgcctctac tggcgctgcc aaggctgtgg gcaaggtcat ccctgagctg

 3241 aacgggaagc tcactggcat ggccttccgt gtccccactg ccaacgtgtc agtggtggac

 3301 ctgacctgcc gtctagaaaa acctgccaaa tatgatgaca tcaagaaggt ggtgaagcag

 3361 gcgtcggagg gccccctcaa gggcatcctg ggctacactg agcaccaggt ggtctcctct

 3421 gacttcaaca gcgacaccca ctcctccacc tttgacgctg gggctggcat tgccctcaac

 3481 gaccactttg tcaagctcat ttcctggtat gtggctgggg ccagagactg gctcttaaaa

 3541 agtgcagggt ctggcgccct ctggtggctg gctcagaaaa agggccctga caactctttt

 3601 catcttctag gtatgacaac gaatttggct acagcaacag ggtggtggac ctcatggccc

 3661 acatggcctc caaggagtaa gacccctgga ccaccagccc cagcaagagc acaagaggaa

 3721 gagagagacc ctcactgctg gggagtccct gccacactca gtcccccacc acactgaatc

 3781 tcccctcctc acagttgcca tgtagacccc ttgaagaggg gaggggccta gggagccgca

 3841 ccttgtcatg taccatcaat aaagtaccct gtgctcaacc

//

www.manaraa.com

 67

2- FLT3 Mutation

LOCUS AC_000145 97423 bp DNA linear CON 03-MAR-2008

DEFINITION Homo sapiens chromosome 13, alternate assembly (based on HuRef),

whole genome shotgun sequence.

ACCESSION AC_000145 REGION: 9398612..9496034

VERSION AC_000145.1 GI:157704454

PROJECT GenomeProject:20837

DBLINK Project:20837

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

 REFERENCE 1 (bases 1 to 97423)

 COMMENT The DNA sequence is from the whole genome assembly released by the

 J Craig Venter Institute as HuRef in May 2007 (see

 http://www.jcvi.org/research/huref/). It is included in the NCBI

 RefSeq collection as an alternative assembly to the one produced by

 the Human Genome Sequencing Consortium. The original whole genome

 shotgun project has the project accession ABBA00000000.1. The HuRef

 assembly represents a composite haploid version of the diploid

 genome sequence from a single individual. The highest scoring

 allele contained is represented in the consensus sequence. DNA

 Donor Name: J. Craig Venter | Date of Birth: October 14, 1946 |

 Sex: Male | Ethnicity: Caucasian | Descent: European - England.

ORIGIN (only part of DNA sequence is presented here)

 1 gtggggacaa gagtaacttt attgaaaata ctaatcctcc atgttacttc tgactggccc

 61 tgagtctggg aaggccgcca aagtgtctag gtgatgtatt actctttatg gtagaacacc

 121 tattcattat aaacttcccc caatacaacc cctgttgttg cagaaatctt aggctgtgac

 181 aaccatagct gcctacacat tccttgtatc ttggggtaaa agcacacgtg ctctggaagg

 241 aatgtgtagg tggctatggg tgcacaattt caggggtttc gtgaactcca gttaagactt

 301 gccctaatta taccatgtaa ataattcaat aatgggcaat tctgtagtag aaattttatt

 361 cccacccata aaatatatca ctaaatagct gaaaaattta catattattt taaaacatag

 421 acttaaaaaa tcatattagc ttctccttag caaaatgctt ttgttttatg tatttacaag

 481 aatatactgt acttcaggta cacaattcac tcaagccagc ctgagaaggc cttggatgca

www.manaraa.com

 68

 541 gatcaatgct ccaataaagt tcattatcag ctcctcctgc cttgtgacag gatgatttga

 601 ttttacaaaa gtccctttga aaacaagagt aaacgcagac agcttctaga gaaaagtctg

 661 gtgaagcagc agttgataat agattttctt ttagtgatga aattaatctt gttttggtaa

 721 tctacagcct gttagggata ggtggaggga tgaagtcctt aaaactaaat tgttcctcta

 781 cgaatcttcg acctgagcct gcggagagag tagccccaaa tccatctctc tgctgaaagg

 841 tcgcctgttt tggtaggtgt gaggacattc cgaaacacgg ccatccacat tctgatacat

 901 ctgaatgtgg gaaagagaca gaacactgat taccatctga tgtagatgca catgttatgc

 961 gcccatatta caaattattt aaataaaaac agttgttcta tatagacaat tacttttttg

 1021 tttgtttgtt gtttgtttgt ttattttttg agacagagtc tcgctctgtt gcccagactg

 1081 gagtgcagtg gtacaaccat agttcaccgt ggccttgatg ttctgggttt gagcaatcct

 1141 cccaccttaa cctcctgagt agctgggacc acaagcaggc tccaccacac cctgctaatt

 1201 tttttatttt ttgtaaagac aaagtctcac tatgttgtcc agggtggtct caaactcctg

 1261 ggctcaagtg atcccacacc accccggcct cccaaagtgc tgcgattaca ggtgtgagcc

 1321 actacgcccg gcctagacat cacttttaaa atgtttaaac tgatatataa tagatgtaca

 1381 tattttcagg aaacgtgtag acaagtactt ttattatgca taggtctcag aggatattct

 1441 atataactaa aaaagcaatt ttggtccttt tattaatgga gaaatcaaat catagtcaaa

 1501 tattttattt cattattgag tctactctca gatataaaat gtcactctag aaatcctaaa

 1561 accatgcaga aaaatcataa aagagaaagg ccacaaaagg aaatctgttc attatggagt

 1621 taatacaagg gactgattct tgagttttcc cttggagttt cacgactttt aaatattttt

 1681 ttctgaaatg aagagattta ctttcctttc ccaaatatga agttaacatg cattcatata

 1741 gataatttga gaaatacaga aagagacgta gaaggccggg cgcagtggct catgcctgta

 1801 atcccagcac tttgggatgc cgaggcgggc ggatcacctg gggttgggag ttcaggacca

 1861 gcctagccaa cgtggagaaa ccctgtctct actaaaaata caaaactagc cgggcatggc

 1921 ggcgcgcgcc tgcagtccca gctacttggg aggctaaggc aggagaattg cttgaacctg

 1981 ggaggtggag gctgcagtga gcctagattg tgccactgca ctccagcctg ggtgacagag

 2041 caagactcca tctcaaaaaa aagaaaaaag gctacaagtc atgacaagta cccgccatta

 2101 tagacagctt gctatgcaca cacaattttg tgtctgtggg ctcaggctat atattctatt

 2161 ttggaacctt attttgaatt atcaatatat tgttattata ctgctcatat gttgcctgtg

 2221 tcacatattt acattattca ctaaggatgg ccacatattt ttttttcacg gcagcctaga

 2281 gttccatagt actgatgcat cataattaac cttttgacca actggttata cgaaacaaac

 2341 tgaaaagtgc acactcaatc tagtctgacg ttgggataag cagaagtgga attgctggat

 2401 caaaaaggat gcacacttga actgtgatac acaaggccag gctgccctgc agaaaggttg

 2461 tatttatttc tactcctatc aacggtgcct ggaaactata ttttccagag ccttctgaac

 2521 aatgggtatg tcagcctccc acatctcttc tcttttgctg agcaagaagt tctatctcct

www.manaraa.com

 69

 2581 taactatata tgtttcacta tctgcaaagt tgggcctttt tcctatactt tatgtccatt

 2641 tgttttcatt ttgaatagcc tgcctatttc ctttgccttt tatgtatata aaaggctata

 2701 caggctgggt gtactggctc aactctgtaa tcctagcact ttgggaggcc ggggcgggag

 2761 gattgcttga ggccaagagt tcaagaccaa actaaccaac atagcaagat cctgtctcta

 2821 aaagaaataa gtttttaaaa ggtgatacat ttttattatt atttgtttat aagaacttta

 2881 tgatttagga atcatgcatt ctatttaaat tttatagatt tgttccgttc ccacagccct

 2941 tgttactgtc tacttctttt tctttgtttt tgacagtttt aatgtgaact gtccagactg

 3001 cctcctacac ttcacttttc tttctagaaa attgtgtgtg tgtgtgtgtg tgtgtgtgtg

 3061 tgtgtgtatc ctttgaccca aaatatatcc attgtgaacc aggtgttgca caatgacagc

 3121 tttgcttgta ccctgaagga tgaacagtaa ctactcatgc gtgccttttg tgaagtagac

 3181 atagcagtta gttagcattt gttgaacctg ttgaatccaa atgtacatct ctaccactga

 3241 atttctaacc acctcatgaa gtttgtgtag cacaaatacc aataacactt ccaatcttcc

 3301 acctgaatta actaacatgt gctcttcatc cagtctcact gtctagaagt ttctagaacc

 3361 atctctgaca atctctctcc actcccatag ctagttactg ggtatagttg taatacatca

 3421 ctcttttcca tttctttaag tgacctttct ttcctttttt tttttttttt ttgttgttgc

 3481 tgttgctgtt gtgacagagt ctcactctgt tgcccaggct ggagtgttgt ggcatgatct

 3541 cagctcacag caacctctgc ctctcaggtt caagcaattc ttgtgcctca agtagctggg

 3601 actacaggtg tgtaccacca cacctggcta atttttatat ttttttagta gagacagggt

 3661 ttcaccatgt tgaccaggct ggtcttgcac tcctggcctc aagtgatcca cccacctagg

 3721 cctcccaaag tgctgcgatt acaggcgtga gccaccaccc tcagccactg ttgtttttaa

 3781 caggctcaca gataacatca taaaagtgac ctttaaatga ctttttaaat acattctcct

 3841 tatgaaattg tgaaacaaac cctaggtttt caaatgtatc attataaaga agtacataaa

 3901 ttttcttata ctttaaaaaa tggttctttt ttccttagtt atcgtttcct tttcatctga

 3961 atgttattta tttgtgcttt tttctttttc aagacagggt ctcgctctgt cactcaggct

 4021 ggagtacagt ggtgcaatca cagctcactg cagcctcaac ctcctaggca gaagtgattc

 4081 tcttgtctca gcctcctgag taactgggac tactggtgtg cgccactaca cctggttaat

 4141 tttttaattt ttggtagaga tggggtccca ttatgttgcc cagtctggtc tcaaacctct

 4201 gagcccaagt gatcctctca ccttggcctc tcaatgtgct gggattacag gcgtgagcca

 4261 ccacacccga cttctttttt tcttaattgt tcacttcaaa gatagtagct ttagtagtat

 4261 ccacacccga cttctttttt tcttaattgt tcacttcaaa gatagtagct ttagtagtat

 4321 atttgtatac tttgttgata tacaatatta atatacagta tagactacac tcagactgct

 4381 gtattcaaat cctaagtctg acatttacca tgttacctta ggcaaattac ttaacctctc

 4441 tgtgcctcaa tttactagtc tgctaaaggg ataataatag aacctacttc aggagattga

 4501 ggtgaggatt aagagttatt aattttgtgg ctaatacatt agtaaactct atgattaaat

www.manaraa.com

 70

Appendix B:Sample Java Code

 //btnAlign

 //

 btnAlign.setText("Align ؛")

 btnAlign.setPreferredSize(new Dimension(100, 29 ؛))

 btnAlign.addActionListener(new ActionListener ()}

 public void actionPerformed(ActionEvent e(

 }

 alignmethod ؛()

 {

؛)}

 //btnResult

 //

 btnResult.setText("Show Results ؛")

 btnResult.setPreferredSize(new Dimension(100, 29 ؛))

 btnResult.addActionListener(new ActionListener ()}

 public void actionPerformed(ActionEvent e(

 }

 //btnResult_actionPerformed(e ؛)

 {

؛)}

 // btnExit

 //

 btnExit.setText("Exit ؛")

 btnExit.setPreferredSize(new Dimension(100, 29 ؛))

www.manaraa.com

 71

 btnExit.addActionListener)

 new ActionListener() // anonymous inner class

 }

 // terminate application when user clicks exitItem

 public void actionPerformed(ActionEvent event(

}

 System.exit(0); // exit application

 { // end method actionPerformed

 { // end anonymous inner class

// ؛) end call to addActionListener

 //btnCancel

 //

 btnCancel.setText("Cancel ؛")

 btnCancel.setPreferredSize(new Dimension(100, 29 ؛))

 btnCancel.addActionListener(new ActionListener ()}

 public void actionPerformed(ActionEvent e(

 }

 //btnCancel_actionPerformed(e ؛)

 {

؛)}

 //

 //btnClear

 //

 btnClear.setText("Clear ؛")

 btnClear.setPreferredSize(new Dimension(100, 29 ؛))

 btnClear.addActionListener)

 new ActionListener() // anonymous inner class

 }

www.manaraa.com

 72

 // display message dialog when user selects About...

 public void actionPerformed(ActionEvent event(

}

 seq1.setText ؛(" ")

 seq2.setText ؛(" ")

 { // end method actionPerformed

 { // end anonymous inner class

// ؛) end call to addActionListener

 //pnlOCA

 //

 pnlOCA.setLayout(new FlowLayout(FlowLayout.RIGHT, 5, 5 ؛))

 pnlOCA.add(btnClear, 0 ؛)

 pnlOCA.add(btnCancel, 1 ؛)

 pnlOCA.add(btnExit, 2 ؛)

 pnlOCA.add(btnResult, 0 ؛)

pnlOCA.add(btnAlign,0 ؛)

//layout = new FlowLayout(FlowLayout.Right ؛)

 JMenu fileMenu = new JMenu("File"); // create file menu

 fileMenu.setMnemonic('F'); // set mnemonic to F

 // create new... menu item

 JMenuItem newItem = new JMenuItem("New ؛")

 newItem.setMnemonic('n'); // set mnemonic to A

 fileMenu.add(newItem); // add about item to file menu

 newItem.addActionListener)

 new ActionListener() // anonymous inner class

 }

 // display message dialog when user selects About...

 public void actionPerformed(ActionEvent event(

www.manaraa.com

 73

}

 { // end method actionPerformed

 { // end anonymous inner class

